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Singlet ground state of the bilinear-biquadratic exchange Hamiltonian

A. Tanaka and T. Idogaki
Department of Applied Science, Faculty of Engineering, Kyushu University, Fukuoka 812-81, Japan

~Received 3 March 1997!

We show that the ground state of the bilinear-biquadratic exchange Hamiltonian is always singlet on a
connected finite lattice with an even number of sites, while it is always triplet on one with an odd number of
sites, if coefficients of the bilinear term2J and that of the biquadratic term2J8 satisfy the condition
J8.J.0. We also find that the total-spin eigenvalueStot of the lowest-energy state in each subspace classified
by M , an eigenvalue ofz component of the total spin, depends on the parity ofM , i.e., Stot5uMu for evenM
and Stot5uMu11 for odd M on an even number site lattice and vice versa on an odd number site lattice.
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In some magnetic materials it has been recognized
the higher-order couplings play an important role as well
usual bilinear exchange interactions, and many theore
and experimental investigations about the effects of th
couplings have been performed. For the case ofS51, an
isotropic model with these couplings is expressed by the
lowing bilinear-biquadratic exchange Hamiltonian:

HL52J(
^ i , j &

Si•Sj2J8(
^ i , j &

~Si•Sj !
2, ~1!

where summation is taken over all bonds on a latticeL.
Blume and Hsieh1 suggested that quadrupole ordering mig
occur on this system, and many people have discussed
possibility and the properties of this type of ordering.2–10 In
particular, Chen and Levy6 discussed the possible ordere
phases and phase transitions associated with the dipole
quadrupole moments in detail by means of a mean-field
proximation and high-temperature series expansion. Thei
sults strongly support the occurrence of quadrupole ph
transition forJ8.J.0.

As far as we know, however, the exact result about
ground state is still rare, except for recent remarka
progress on linear chain systems.11–17 One of the exact re-
sults on general lattice systems is Munro’s argument18 for
J,0, J8.0, which is the straightforward extension of th
Lieb-Mattis theorem.19 Furthermore, this result was extende
to the caseJ8.J.0 by Parkinson.20 His argument is almos
exact. However, to determine the total spin eigenvalue,
needed one assumption that the ground state forJ50,
J8.0 is nondegenerate, which was confirmed only by
numerical diagonalization restricted for the finite-size ch
systems up to eight sites. Since this region is assumed t
a quadrupole ordering phase at a sufficiently low tempe
ture, it is desirable to discuss the ground state in detai
clarify the nature of this ordering.

In this paper, we show the lattice where Parkinson’s
sumption is not satisfied and prove that the ground stat
the HamiltonianHL is always singlet in the regionJ8.J.0
on general finite lattice systems with an even number
sites. We also extend the discussion to the lowest-ene
560163-1829/97/56~17!/10774~4!/$10.00
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state in a subspace classified by an eigenvalue ofz compo-
nent of the total spin and to the case of an odd numbe
sites.

For a while, we restrict ourselves to a finite bipartite la
tice L5A1B, where there is no bond connecting sitesi
PA and j PA or i PB and j PB. This restriction will be
removed later. We denote the number of the site onX by uXu
and assumeuAu>uBu without loss of generality. We define
the total spinStot5SjPLSj and denote the eigenvalues
(Stot)

2 and Stot
z by Stot(Stot11) andM , respectively. We de-

fine the stateuxm(M )&, which belongs to theM subspace, in
the following manner:

uxm~M !&5C)
j PL

~Sj
1!mj ux0&, ~2!

whereSj
15Sj

x1 iSj
y is the usual spin raising operator at si

j , ux0& is the eigenstate where allSj
z’s have eigenvalue21,

andC is a positive normalization constant.m represents spin
configurationsm5$m1 ,m2 ,...,muLu% with mj50, 1, 2 pro-
viding thatS j PL(mj21)5M .

Munro’s argument is as follows. ForJ,0, J8.0 the non-
zero off-diagonal matrix elements of the HamiltonianHL are
always negative if one uses the basis states$U1uxm(M )&%,
whereU15exp(2ipSjPASj

z). It is easily seen that withinM
subspace any two states can be connected by some ap
tions ofHL . Then, from the Perron-Frobenius theorem it
shown that the lowest-energy state in this subspace is un
and positive definite. Following the argument of Lieb a
Mattis, it is also shown that this state hasStot5uMu if uM u
>uAu2uBu andStot5uAu2uBu if uM u<uAu2uBu, therefore the
ground states ofHL haveStot5uAu2uBu with obvious degen-
eracy 2Stot11.

Parkinson extended Munro’s result toJ8.J.0 by
using other basis states$U2uxm(M )&% with U2

5exp@2i(p/2)S j PL(Sj
z)2#. These basis states make all th

off-diagonal nonzero matrix elements ofHL negative, pro-
vided J8.J.0. SinceHL within M subspace is still irre-
ducible, the lowest-energy state is again unique and pos
definite from the Perron-Frobenius theorem. However, o
cannot determineStot of this state immediately because it
positive definite on the basis states$U2uxm(M )&% which are
10 774 © 1997 The American Physical Society
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different from those forJ,0, J8.0. To determineStot of the
ground state, Parkinson made one assumption that
ground state is nondegenerate forJ50, J8.0. As stated in
Ref. 20, there appear obvious eigenstates, and alsoD defined
by D5S j PA(Sj

z)22S j PB(Sj
z)2 becomes the conserved qua

tity in this case, which means thatHL within M subspace is
reducible and one cannot prove the uniqueness of the low
energy state within this subspace. If this assumption is sa
fied, however, the ground state will automatically be t
eigenstate of (Stot)

2. In addition, since this ground state wi
be a positive semidefinite state not only on the basis st
for J,0, J8.0 but on those forJ8.J.0, it will not be
orthogonal to both ground states for each region. There
one may be able to conclude thatStot for the ground state for
J8.J.0 is the same value as that forJ,0, J8.0, i.e.,
Stot5uAu2uBu. There really exists, however, a lattice on whi
the assumption is not satisfied, as discussed below.

Consider the HamiltonianHL1
with J50, J8.0 on the

lattice L1 composed ofA5$2,3,4% and B5$1%, whose
structure is described in Fig. 1. In this case,M50 subspace
is found to be decomposed into two disconnected subspa
one of which corresponds tod50, the other tod52, where
d is the eigenvalue ofD. By simple calculation one can fin
the lowest-energy state

uf0&5(
m

am
~0!uxm~0!&, ~3!

uf2&5(
m

am
~2!uxm~0!&, ~4!

in the d50 and d52 subspace, respectively. The coef
cients am

(0) are 3/A15 for the spin configurationm
5$m1 ,m2 ,m3 ,m4%5$1,1,1,1% and 21/A15 for m
5$2,0,1,1%, $2,1,0,1%, $2,1,1,0%, $0,2,1,1%, $0,1,2,1%, and
$0,1,1,2%. The coefficientsam

(2) are 1/A30 for m5$1,1,2,0%,
$1,1,0,2%, $1,2,1,0%, $1,0,1,2%, $1,2,0,1%, and $1,0,2,1% and
22/A30 for m5$2,2,0,0,%, $2,0,2,0%, $2,0,0,2%, $0,0,2,2%,
$0,2,0,2%, and $0,2,2,0%. These two states have the same e
ergy 28J8 and are the ground state. SinceD and (Stot)

2 do
not commute each other, these states are not the eigens
of (Stot)

2. The linear combinations of these states become
eigenstates of (Stot)

2, and of course we can obtain these sta
without effort in this simple case, i.e., we have

uf̃0&5
1

)

uf0&2
2

A6
uf2&, ~5!

uf̃2&5
2

A6
uf0&1

1

)

uf2&, ~6!

FIG. 1. Four site bipartite latticeL1 with uAu53 anduBu51.
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where uf̃0& and uf̃2& has Stot50 and 2, respectively. This
result means that Parkinson’s assumption is not satisfied
the latticeL1 .

It is interesting to notice that Eqs.~5! and~6! are rewritten
in a positive form

uf̃0&5
1

)

(
m

uam
~0!uU2uxm~0!&1

2

A6
(
m

uam
~2!uU2uxm~0!&,

~7!

uf̃2&5
2

A6
(
m

uam
~0!uU1uxm~0!&1

1

)

(
m

uam
~2!uU1uxm~0!&.

~8!

We know that the ground state ofHL1
with J8.J.0 can be

expressed as a positive definite state on the basis s
$U2uxm(0)&%.20 This implies that the ground state fo
J8.J.0 is not orthogonal touf̃0& and hasStot50. On the
simple latticeL1 , we can obtain the eigenstates of (Stot)

2 for
J50, J8.0 and find that these states are expressed a
positive form. On general lattice systems, however, it is i
possible to know what spin states are realized forJ50,
J8.0 because of their possible degeneracy. So we hav
go another way to determineStot for J8.J.0.

Hereafter, we considerHL on a connected finite latticeL
with an even number of sites, which is not required to
bipartite. SinceU2 does not depend on the bipartite structu
the lowest-energy state withinM subspace is still unique an
positive for J8.J.0. Here we consider the lowest-energ
stateuFG(0)& only within M50 subspace. Since every en
ergy eigenstate with a givenStot always has a representativ
in M<Stot subspace, the global ground state has the sa
Stot as the lowest-energy state inM50 subspace. Specifi
cally, if this lowest-energy state hasStot50, then this is the
unique ground state. If withinM50 subspace there exists
stateuF̃(0)& which is an eigenstate of (Stot)

2 with eigenvalue
S̃tot(S̃tot11) and is a positive semidefinite state on the ba
states$U2uxm(0)&%, then we are able to concludeStot5S̃tot

by using the nonorthogonality betweenuFG(0)& anduF̃(0)&.
In fact, we can find a positive semidefinite stateuF̃(0)& with
S̃tot50, as discussed below. Therefore it can be proved
the ground state for this region is always singlet on gene
lattice systems with an even number of sites.

From here we prove the existence of a positive semid
nite stateuF̃(0)& on the basis states$U2uxm(0)&% with S̃tot
50. We denote byV a set whose elements are pairs of sit

V5$~ j 1 , j 2!,~ j 3 , j 4!,...,~ j uLu21 , j uLu!%,

where j kPL and j kÞ j l for kÞ l . We denote byu( j k , j l)&0
the singlet state on the sitej k , j l :

u~ j k , j l !&05u11& j k
^ u21& j l

2u0& j k
^ u0& j l

1u21& j k
^ u11& j l

,
~9!

whereSj k

z us& j k
5sus& j k

. Now, using these singlet states, w

defineuF̃(0)& as follows:

uF̃~0!&5~21! uLu/2
^

~ j k , j l !PV

u~ j k , j l !&0 . ~10!
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Sinceu( j k , j l)&0 is the singlet state, the relation

~Sj l

11Sj k

1!u~ j k , j l !&050, ~11!

is always satisfied and therefore

Stot
1 uF̃~0!&5 (

~ j k , j l !PV
~Sj l

11Sj k

1!uF̃~0!&50. ~12!

By noting (Stot)
25(Stot

z )21Stot
z 1Stot

2 Stot
1 , we obtain

~Stot!
2uF̃~0!&50. ~13!

On the other hand, if we useU2( j k , j l) defined by

U2~ j k , j l !5e2 i ~p/2!@~Sj k

z
!21~Sj l

z
!2#, ~14!

Eq. ~9! is rewritten as

u~ j k , j l !&052U2~ j k , j l !~ u11& j k
^ u21& j l

1u0& j k
^ u0& j l

1u21& j k
^ u11& j l

). ~15!

By substituting Eq.~15! into Eq.~10! we can expressuF̃(0)&
as

uF̃~0!&5U2(
m

bmuxm~0!&, bm>0, ~16!

with the definition ofuxm(M )& given by Eq.~2!. From Eqs.
~13! and ~16!, we found thatuF̃(0)& hasS̃tot50 and is posi-
tive semidefinite on the basis states$U2uxm(0)&%. Now, the
proof of the singlet ground state on a lattice with an ev
number of sites is complete.

We extend the discussion above to the lowest energy s
uFG(M )& within M.0 subspace. We define the stat
u( j k , j l)&1 and u( j k , j l)&2 as

u~ j k , j l !&15u11& j k
^ u0& j l

1u0& j k
^ u11& j l

, ~17!

u~ j k , j l !&25u11& j k
^ u11& j l

. ~18!

It is noted that these states can be rewritten as

u~ j k , j l !&15 iU 2~ j k , j l !~ u11& j k
^ u0& j l

1u0& j k
^ u11& j l

),
~19!

u~ j k , j l !&252U2~ j k , j l !u11& j k
^ u11& j l

. ~20!

In the case of evenM , we decomposeV into two
disjoint subsets V15$( j 1 , j 2),...,(j M21 , j M)% and V2
5$( j M11 , j M12),...,(j uLu21 , j uLu)% and define the state
uF̃(M )& as

uF̃~M !&5~21! uLu/2
^

~ j k , j l !PV1

u~ j k , j l !&2 ^

~ j k8 , j l8!PV2

u~ j k8 , j l8!&0 .

~21!

We have

~Stot!
2uF̃~M !&5M ~M11!uF̃~M !&, ~22!

by noting that

~Sj l

11Sj k

1!u~ j k , j l !&250, ~23!
n

te

Stot
z uF̃~M !&5M uF̃~M !&. ~24!

This impliesS̃tot5M. Furthermore, by substituting Eqs.~15!
and ~20! into Eq. ~21! we can expressuF̃(M )& as a similar
form to Eq.~16!. Therefore, the lowest-energy state in ev
M subspace hasStot5S̃tot5M.

In the case of oddM , we decomposeV into two dis-
joint subsets V15$( j 1 , j 2),...,(j M , j M11)% and V2
5$( j M12 , j M13),...,(j uLu21 , j uLu)% and define the state
uF̃(M )& as

uF̃~M !&5 i ~21! uLu/2

3 (
~ j k , j l !PV1 F u~ j k , j l !&1 ^

~ j k8 , j l8!PV1

~ j k8 , j l8!Þ~ j k , j l !

u~ j k8 , j l8!&2G
^

~ j k9 , j l9!PV2

u~ j k9 , j l9!&0 . ~25!

In this case, by making use of the relations

~Sj l

11Sj k

1!u~ j k , j l !&152&u~ j k , j l !&2 , ~26!

~Sj l

21Sj k

2!u~ j k , j l !&25&u~ j k , j l !&1 , ~27!

we obtain

Stot
2 Stot

1 uF̃~M !&52~M11!uF̃~M !&. ~28!

Combining the same relation as Eq.~24!, we find

~Stot!
2uF̃~M !&5~M11!~M12!uF̃~M !&. ~29!

This signifiesS̃tot5M11. By substituting Eqs.~15!, ~19!, and
~20! into Eq. ~25!, uF̃(M )& can be rewritten as the positiv
semidefinite state again. Therefore, the lowest-energy sta
odd M subspace hasStot5S̃tot5M11.

We briefly comment on the case of a connected fin
latticeL with an odd number of sites. In this case, we sel
a site, sayj , and make a setV, except sitej . In M50
subspace, we set the stateuF̃(0)& as

uF̃~0!&5~21!~ uLu21!/2u0& j ^

~ j k , j l !PV

u~ j k , j l !&0 . ~30!

It can be easily seen that this state hasS̃tot51 and is positive
semidefinite. Therefore, we can prove that the ground s
on a lattice with an odd number of sites is triplet.

In the case of oddM.0 subspace, we decom
pose V into V15$( j 1 , j 2),...,(j M22 , j M21)% and V2

5$( j M , j M11),...,(j uLu22 , j uLu21)% and set the stateuF̃(M )&
as

uF̃~M !&52 i ~21!~ uLu21!/2u1& j ^

~ j k , j l !PV1

u~ j k , j l !&2

^

~ j k8 , j l8!PV2

u~ j k8 , j l8!&0 . ~3
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In the case of evenM.0 subspace, we decom
pose V into V15$( j 1 , j 2),...,(j M21 , j M)% and V2
5$( j M11 , j M12),...,(j uLu22 , j uLu21)% and set the state
uF̃(M )& as

uF̃~M !&5~21!~ uLu21!/2u0& j ^

~ j k , j l !PV1

u~ j k , j l !&2

^

~ j k8 , j l8!PV2

u~ j k8 , j l8!&01~21!~ uLu21!/2u1& j

3 (
~ j k , j l !PV1 F u~ j k , j l !&1 ^

~ j k8 , j l8!PV1

~ j k8 , j l8!Þ~ j k , j l !

u~ j k8 , j l8!&2G
^

~ j k9 , j l9!PV2

u~ j k9 , j l9!&0 . ~32!

Following the same way in the case of an even numbe
sites, we can find that these states haveS̃tot5M or S̃tot5M
11 in odd or evenM subspace, respectively, and are rew
ten in positive semidefinite form. Therefore, we reach
conclusion that on a lattice with an odd number of sites
lowest-energy state in odd or evenM subspace hasStot5M
or Stot5M11, respectively.

In Fig. 2 we summarize the known results. The ferrom
netic ground state forJ.0, J8,J was proved by Aksamit21

by means of the variational method, though we paid lit
attention to this region in the present paper. We have pro
that in the regionJ8.J.0 the ground state ofHL is singlet
~triplet! on any connected finite lattice with an even~odd!
number of sites. We also obtained the total-spin eigenva
of the lowest-energy state inM.0 subspace. The lowes
energy state inM,0 subspace can be treated in the sa
way. These results are summarized as follows. In the cas
a lattice with an even number of sites, the lowest-ene
state hasStot5uMu or Stot5uMu11 in even or oddM subspace,
respectively, and in the case of a lattice with an odd num
of sites, that hasStot5uMu or Stot5uMu11 in odd or evenM
subspace, respectively. From our results, it turns out that
f

-
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e

-

d

e

e
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y
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first exited state forJ8.J.0 is not triplet ~assumed to be
quintet! on an even number site lattice.

We have not discussed the ground state forJ50, J8.0
on general lattice systems in detail. We assume that in
case of a bipartite lattice withuAu2uBu5O(uLu) there is
multiple degeneracy on the ground state for this region
cause (Stot)

2 may connect the two states, one of which hasd,
the other of which hasd12 or d22.

Recently, it was shown by Tian22 that in the caseuAu
2uBu5O(uLu) there are both ferromagnetic and antiferr
magnetic long-range orders once the ground states are
pressed as the positive definite states on the basis s
$U1uxm(M )&%. Therefore, on the ground states of th
bilinear-biquadratic exchange Hamiltonian withJ,0, J8
>0 there coexists the ferromagnetic and antiferromagn
long range orders ifuAu2uBu5O(uLu). In the present pape
we found that the ground state is always singlet on an e
number site lattice in the caseJ8.J.0, although the bilin-
ear exchange interaction term is a ferromagnetic one. In
region it is a very interesting problem determining what ty
of long-range orders occur associated with dipole or quad
pole moments.

FIG. 2. The ground-state phase diagram of the biline
biquadratic exchange Hamiltonian. In the regionJ,0, J8.0, the
ground state hasStot5uAu2uBu ~the proof is restricted to a bipartite
lattice!. In the regionJ8.J.0, the ground state is always single
~triplet! on a lattice with an even~odd! number of sites. In the
regionJ.0, J8,J, the ground state is ferromagnetic.
n.
1M. Blume and Y. Y. Hsieh, J. Appl. Phys.40, 1249~1969!.
2H. H. Chen and R. I. Joseph, Phys. Rev. B2, 2706~1970!.
3M. F. Thorpe, J. Appl. Phys.42, 1410~1971!.
4M. F. Thorpe and M. Blume, Phys. Rev. B5, 1961~1972!.
5M. Nauciel-Bloch, G. Sarma, and A. Castets, Phys. Rev. B5,

4603 ~1972!.
6H. H. Chen and P. M. Levy, Phys. Rev. B7, 4267~1973!; 7, 4284

~1973!.
7J. Adler, J. Oitmaa, and A. M. Stewart, J. Phys. C9, 2911~1976!.
8R. Micnas, J. Phys. C9, 3307~1976!.
9H. A. Brown, Acta Phys. Pol. A72, 391 ~1987!.

10G. S. Chaddha and J. Singh, Phys. Status Solidi B161, 837
~1990!.
11B. Sutherland, Phys. Rev. B12, 3795~1975!.
12L. A. Takhtajan, Phys. Lett.87A, 479 ~1982!.
13H. M. Babujian, Phys. Lett.90A, 479 ~1982!.
14J. B. Parkinson, J. Phys. C20, L1029 ~1987!.
15M. N. Barbar and M. T. Batchelor, Phys. Rev. B40, 4621~1989!.
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