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Singlet ground state of the bilinear-biquadratic exchange Hamiltonian
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We show that the ground state of the bilinear-biquadratic exchange Hamiltonian is always singlet on a
connected finite lattice with an even number of sites, while it is always triplet on one with an odd number of
sites, if coefficients of the bilinear termJ and that of the biquadratic termJ’ satisfy the condition
J'>J>0. We also find that the total-spin eigenvalgg of the lowest-energy state in each subspace classified
by M, an eigenvalue of component of the total spin, depends on the paritMofi.e., S;;;=|M| for evenM
and S;;=|M|+1 for odd M on an even number site lattice and vice versa on an odd number site lattice.
[S0163-18207)04941-2

In some magnetic materials it has been recognized thadtate in a subspace classified by an eigenvalue @impo-
the higher-order couplings play an important role as well anent of the total spin and to the case of an odd number of
usual bilinear exchange interactions, and many theoreticalites.
and experimental investigations about the effects of these For a while, we restrict ourselves to a finite bipartite lat-
couplings have been performed. For the caseésefl, an  tice A=A+B, where there is no bond connecting siies
isotropic model with these couplings is expressed by the fole A and j €A or ieB andjeB. This restriction will be
lowing bilinear-biquadratic exchange Hamiltonian: removed later. We denote the number of the siteXdsy | X|

and assumgA|=|B| without loss of generality. We define
the t2()tal SpinSy=2j.AS; and denote the eigenvalues of
_ , ) (Siep” and Si,; by Sie(Sor+1) andM, respectively. We de-
Ha= _JUE,D S-§-J 02” (S-5)% @ fine the statéxm(M)), which belongs to thé/ subspace, in
the following manner:

where summation is taken over all bonds on a lattice .

Blume and Hsiehsuggested that quadrupole ordering might XM =CIT (S)™M|x0), 2
occur on this system, and many people have discuossed the JeA

possibility and the properties of this type of orderfig’ In whereSJ-+=S}‘+ iSJy is the usual spin raising operator at site

articular, Chen and LeVydiscussed the possible ordered : . .
P Y P |xo) is the eigenstate where £f’s have eigenvalue-1,

phases and phase transitions associated with the dipole ahd . " L .
quadrupole moments in detail by means of a mean-field ap';md(_: is a_posmve normalization constam. represents spin
proximation and high-temperature series expansion. Their réonfigurationsm={my,my,...,my} with m;=0, 1, 2 pro-

sults strongly support the occurrence of quadrupole phaséding the}tszA(mj—_l):M. ,
transition ford’>J>0. Munro’s argument is as follows. Fd<0, J'>0 the non-

As far as we know, however, the exact result about the?ero off-diagonal matrix elements of the Hamiltonian are
ground state is still rare, except for recent remarkabledWays negative if one uses the basis stdtdsxm(M))},
progress on linear chain systefis!” One of the exact re- WhereU,=exp(—inZ;.,S). It is easily seen that withiiv
sults on general lattice systems is Munro’s argurfefur ~ Subspace any two states can be connected by some applica-
J<0, J'>0, which is the straightforward extension of the tions of 7, . Then, from the Perron-Frobenius theorem it is
Lieb-Mattis theorent® Furthermore, this result was extended shown that the lowest-energy state in this subspace is unique
to the case)’>J>0 by Parkinsorf® His argument is almost and positive definite. Following the argument of Lieb and
exact. However, to determine the total spin eigenvalue, hdattis, it is also shown that this state h&g=|M| if |M|
needed one assumption that the ground state Jeo, =|Al—[B| andSy=|A/—|B|if [M|<|A|-|B|, therefore the
J'>0 is nondegenerate, which was confirmed only by theground states ot haveS;,=|A|—|B| with obvious degen-
numerical diagonalization restricted for the finite-size chaineracy Sit1.
systems up to eight sites. Since this region is assumed to be Parkinson extended Munro’'s result t3'>J>0 by
a quadrupole ordering phase at a sufficiently low temperausing other basis states{U,|xn(M))} with U,
ture, it is desirable to discuss the ground state in detail to= eX[:[—i(W/Z)E,-EA(SJ-Z)Z]. These basis states make all the
clarify the nature of this ordering. off-diagonal nonzero matrix elements #f, negative, pro-

In this paper, we show the lattice where Parkinson’s asvided J'>J>0. SinceH, within M subspace is still irre-
sumption is not satisfied and prove that the ground state alucible, the lowest-energy state is again unique and positive
the HamiltoniarH, is always singlet in the regioly >J>0  definite from the Perron-Frobenius theorem. However, one
on general finite lattice systems with an even number ofannot determin&,, of this state immediately because it is
sites. We also extend the discussion to the lowest-energgositive definite on the basis statds,| x,(M))} which are
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4 where|¢o) and |$,) hasS,=0 and 2, respectively. This
result means that Parkinson’s assumption is not satisfied on
the latticeA ;.

L It is interesting to notice that Eqé) and(6) are rewritten
B in a positive form
2 @A
o . -~ 1 ) 2 @)
FIG. 1. Four site bipartite latticd ; with |A|=3 and|B|=1. |o)=— >, 122U/ xm(0))+ —= > [a?|U,|xm(0)),
V3 'm \/é m

different from those fod<<0, J' >0. To determiné,, of the @
ground state, Parkinson made one assumption that the 1
ground state is nondegenerate for 0, J'>0. As stated in |5 y= = a9y 0))+ — a@u 0)).
Ref. 20, there appear obvious eigenstates, andAaefined |#2) JE% [2m [U1lxm(09) V3 % [ Ulxm(0))
by A=3; EA(SJ-Z)Z—EJ- EB(SJ-Z)Z becomes the conserved quan- (8)
tity in .th|s case, which means that, W|t_h|n M subspace is We know that the ground state #f,with J’>J>0 can be
reducible and one cannot prove the uniqueness of the lowest- d tive definit 1 at the basis stat
energy state within this subspace. If this assumption is sati _Spressg a;so aTrEJ.os[lvel_ € '?r'] et sj[r? € on de ta?s ];sa es
fied, however, the ground state will automatically be the ,2|Xm( ),>}' IS implies hat the ground state for
eigenstate of )2 In addition, since this ground state will J'>J>0 is not orthogonal td¢o) and hasS;,=0. 02 the
be a positive semidefinite state not only on the basis statedmPple latticeA,, we can obtain the eigenstates &) for
for J<0, J’>0 but on those ford’>J>0, it will not be J=0,J">0 and find that these states are expressed as a
orthogonal to both ground states for each region. ThereforB0sitive form. On general lattice systems, however, it is im-
one may be able to conclude tf@, for the ground state for POSsible to know what spin states are realized Jer0,
J'>J>0 is the same value as that fd<0, J'>0, i.e., J >0 because of their possible degeneracy. So we have to
Swi=|Al—|BJ. There really exists, however, a lattice on which 90 another way to determir@, for J'>J>0. _
the assumption is not satisfied, as discussed below. Hereafter, we considet, on a connected finite lattic&

Consider the Hamiltoniaf, with J=0, J'>0 on the with an even number of sites, which is not required to be
lattice A, composed ofA—{213 4 and B={1}, whose bipartite. Since&J, does not depend on the bipartite structure,

1 - 1y - ] _ . . . .

structure is described in Fig. 1. In this cabé=0 subspace the lowest-energy state withM subspace is still unique and

o , . )
is found to be decomposed into two disconnected subspac ositive forJ’>J>0. Here we consider the lowest-energy

one of which corresponds =0, the other tad=2, where > ate|q>G(0)> only within M=0 subspace. Since every en-
S is the eigenvalue oA. By simple calculation one can find ergy eigenstate with a giveR,; always has a representative
the lowest-energy state in M<S,,; subspace, the global ground state has the same
St @s the lowest-energy state M =0 subspace. Specifi-
cally, if this lowest-energy state h&,;=0, then this is the
[ o) =2, a9 xm(0)), (3)  unique ground state. If withiiV =0 subspace there exists a
m gtat’(—:-v|<b(0)> which is an eigenstate o8(,)? with eigenvalue
Si(Sott1) and is a positive semidefinite state on the basis

|p2)=2> a2 xm(0)), (4)  states{U,|xm(0))}, then we are able to conclu@gt=§ot
" by using the nonorthogonality betwepghg(0)) and|®(0)).
in the 5=0 and 6=2 subspace, respectively. The coeffi- In fact, we can find a positive semidefinite stgdg0)) with
cients al? are 3415 for the spin configurationm §tot=0, as discussed below. Therefore it can be proved that
={m;,m,,my,m,}={1,1,1,%4 and —1/\/1—5 for m the ground state for this region is always singlet on general
={2,01,%, {2,103, {2,110, {0,2,1,%, {0,1,2,3, and lattice systems with an even number of sites.

{0,1,1,2. The coefficientsa{?) are 14/30 for m={1,1,2,@, From here we prove the existence of a positive semidefi-
{1,1,0,2, {1,2,1,6, {1,0,1,2, {1,2,0,4, and {1,0,2,4 and nite state|®(0)) on the basis stateld),|xn(0))} with Sy
—2/\/30 for m={2,2,0,0}, {2,0,2,0, {2,0,0,2, {0,0,2,2, =0. We denote by) a set whose elements are pairs of sites:
{0,2,0,2, and{0,2,2,3. These two states have the same en- o . .

ergy —8J’ and are the ground state. Sindeand (S)? do Q={(j1.J2),(z.ia)s- (a1~ 1.0 1aD}

not commute each other, these states are not the eigensta{,%erejke/\ and j#j, for k#1. We denote by (jx.ii))o
of (Sp)> The linear combinations of these states become thghe singlet state on the sijg,j; :

eigenstates 0f%,,)? and of course we can obtain these states

without effort in this simple case, i.e., we have IGioi))o=1+1); ®[—1);,—[0);, ®|0);, +[—1); ®[+1);,
L ) ©)
| o) = 7 [ o) — % |d2), (5)  whereS§] |o);, = olo);,. Now, using these singlet states, we

definel&)(O)) as follows:

|Ez>:%|¢o)+%|¢z>, (6) |2(0))=(-1)A2 @ |(ji.in)o- (10

(jk.J)el



10776

Since|(jk,j1))o is the singlet state, the relation

(S +SI(ki)o=0 (13)
is always satisfied and therefore
Sel®0)= > (S/+8)[®(0)=0. (12
(k:ineQ
By noting (S)”=(So)*+Sor* SorSor, We obtain
(S0)?®(0))=0. (13

On the other hand, if we udé,(j,,j,) defined by

Ua(ii,j)) =€ (L)% ()%, (14)
Eq. (9) is rewritten as
|Gk dn)o=—VUalik,d) (| +1);,®|—1); +[0); ®[0);,

+[-1),@[+1);). (15

By substituting Eq(15) into Eq.(10) we can expreskﬁ)(O))
as

[®(0))=U22 bulxm(0)), br=0, (16)

with the definition of| x,,(M)) given by Eq.(2). From Egs.
(13) and(16), we found tha{d(0)) hasS,,;=0 and is posi-
tive semidefinite on the basis stafgs,| x(0))}. Now, the

proof of the singlet ground state on a lattice with an even

number of sites is complete.
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SLID(M))=M|B(M)). (24)

This implies'étotzM. Furthermore, by substituting Eq4.5)
and (20) into Eq. (21) we can expresfb(M)) as a similar
form to Eq.(16). Therefore, the lowest-energy state in even

M subspace haS;;=S,=M
In the case of oddM, we decomposé) into two dis-

joint - subsets 91:_{(]1,j_2),---,(jM,jM+1)} and Q;
={(im+2+0m+3)s--s(jaj-1.Jja)} and define the state
|P(M)) as

| B(M))=i(~1)A"

X X PBD ® |(Gkoi )2
Uit D=0y
(D) #Gkoin
@ |Gk, (25)
(e,

In this case, by making use of the relations
(S++S+)|(Jk i 1=2v2[(jk.1))2. (26)
(Sj_l+Sj_k)|(jkajl)>2:‘/2|(jkvjl)>li 27

we obtain
Sl P(M))=2(M+1)|D(M)). (28)

We extend the discussion above to the lowest energy statéombining the same relation as Eg@4), we find

|®s(M)) within M>0 subspace. We define the states

[(Jk.01))1 and|[(j«.j1))2 as

|(jk1j|)>l:|+l>jk®|o>j|+|O>jk®|+1>jl’ 17)

IGrad)2=1+1);, [+ 1);. (18)

It is noted that these states can be rewritten as

[Giei) =100 ([ +1);,®[0); +[0);, ®[+1);),
(19

(20

[Giodi))2=—Ualjk. i+ 1), @[ +1);,.

In the case of everM, we decompose&) into two
disjoint subsets Q1={(j1,j2),---,(im-1,im)} and Q,
=~{(jM+lajM+2)v---v

|P(M)) as
DM)=(-D2 o (D) ©  1GeiD)o.
(k.iDey (p.i e,
(21
We have
(S 2 P(M))=M(M+1)|B(M)), (22
by noting that
S++S+)|(]k j1))2=0, (23

(ja|-1,ijap} and define the state

(S0 B(M)=(M+1)(M+2)|B(M)).  (29)

This signifiesS,,=M +1. By substituting Eqg15), (19), and
(20) into Eq. (25), |®(M)) can be rewritten as the positive
semidefinite state again. Therefore, the lowest-energy state in
odd M subspace haS;;;=S,=M+1.

We briefly comment on the case of a connected finite
lattice A with an odd number of sites. In this case, we select

a site, sayj, and make a sef), except sitej. In M=0
subspace, we set the stad®(0)) as
|2(0))=(~)M"D20); @ |Gk, (30)

(jk,j|)E»Q

It can be easily seen that this state Bgs=1 and is positive
semidefinite. Therefore, we can prove that the ground state
on a lattice with an odd number of sites is triplet.

In the case of oddM>0 subspace, we decom-
pose Q into Q3={(j1.i2).---.(im-2.im-1)} and Q

:{(jM vjM+1)1"'1(j|A|721j\A|71)} and set the Stath(M)>
as

|B(M))=—i(—1)IN" D21y, @
(jk.JDeQq

@ (k. )o-

(g.ij) ey

remz

(31
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In the case of evenM>0 subspace, we decom- J
pose Q into Q1={(j1.j2).--.(m-1.im)} and Q, St =0 Q)
={(m+1:dm+2)s--,(ja)-2+]1aj-21)} and set the state Sun = |A| - [B]
|P(M)) as o
=~ _ . J
[o(M)=(=DIM"Y20);, ® (kD)2 0
(jk,j|)eQ1 Stor = |Al
® |Gk inoe+ (=DM,
(ki) e,
o o FIG. 2. The ground-state phase diagram of the bilinear-
X 2 lGk.iD)a ® |Gk i)z biquadratic exchange Hamiltonian. In the regida0, J'>0, the
Uil ey (i) ef ground state haS=|A|—|B| (the proof is restricted to a bipartite
GhdD#Giodn lattice). In the regiond’ >J>0, the ground state is always singlet
(triplet) on a lattice with an everfodd number of sites. In the
® |(ksifo- (32)  regionJ>0, J'<J, the ground state is ferromagnetic.
(ki) =9,

Following th in th f b irst exited state ford’>J>0 is not triplet (assumed to be
ollowing the same way in the case of an even number of ;iniey on an even number site lattice.

sites, we can find that these states h&g=M or Su=M We have not discussed the ground stateJer0, J' >0

+1in odd or everM subspace, respectively, and are rewrit-,, gonara| Jattice systems in detail. We assume that in the

ten in positive semidefinite form. Therefore, we reach the . . . . _IR|— .
conclusion that on a lattice with an odd number of sites theCase of a bipartite lattice witha|—[B|=O(|A]) there is

lowiest-energy state in 0dd or eveh subspace hagu=M (o B (TR B TR QT ot O e s
or S,=M+1, respectively. o y , a

In Fig. 2 we summarize the known results. The ferromag—the other of WhiCh hag+2 or 5__2' )
Recently, it was shown by Tidhthat in the casdA|

netic ground state fai>0, J’<J was proved by Aksarfit , /
by means of the variational method, though we paid little ™ |Bl = O(|A[) there are both ferromagnetic and antiferro-
attention to this region in the present paper. We have provefl@gnetic long-range orders once the ground states are ex-
that in the region)’ >J>0 the ground state df, is singlet pressed as the positive definite states on the basis states
(triplet) on any connected finite lattice with an evésdd ~ {U1lxm(M))}. Therefore, on the ground states of the
number of sites. We also obtained the total-spin eigenvalubilinear-biquadratic exchange Hamiltonian with<0, J’

of the lowest-energy state iM>0 subspace. The lowest- =0 there coexists the ferromagnetic and antiferromagnetic
energy state il <0 subspace can be treated in the samdong range orders ifA| —|B|=O(|A]). In the present paper
way. These results are summarized as follows. In the case @fe found that the ground state is always singlet on an even
a lattice with an even number of sites, the lowest-energynumber site lattice in the caseé>J>0, although the bilin-
state ha§,,=|M| or S,=|M|+1 in even or oddM subspace, ear exchange interaction term is a ferromagnetic one. In this
respectively, and in the case of a lattice with an odd numberegion it is a very interesting problem determining what type
of sites, that ha$,,;=|M| or S;;;=|M|+1 in odd or everM  of long-range orders occur associated with dipole or quadru-
subspace, respectively. From our results, it turns out that theole moments.
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