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Exact solution of the biquadratic spin-1 t-J model in one dimension
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A generalization of thet-J model with a nearest-neighbor hopping is formulated and solved exactly by the
Bethe ansatz method. The model describes the dynamics of spin-S fermions with isotropic or anisotropic
interactions. In the caseS51 the magnetic interaction is biquadratic in the spin operators. In contrast to the
SU(N) generalization of thet-J model, studied previously in the literature, the present model possesses
beyond a massless excitation also a massive one. The physical properties indicate the existence of Cooper-type
pairs with finite binding energy.@S0163-1829~97!05538-0#
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The t-J model has emerged as a paradigm for study
the low-energy electronic properties of the copper-oxi
based high-temperature superconductors.1,2 Although high-
Tc cuprates are at least two-dimensional systems the
dimensional version of the model and its generalizations
also intensively studied since in this case exact results ca
derived.3–12 The t-J model describes the dynamics of spi
1
2 fermionic particles with Hamiltonian given by

H52t(
j ,s

P~cj ,s
1 cj 11,s1cj 11,s

1 cj ,s!P

1J(
j

~SW j•SW j 112njnj 11/4!, ~1!

where cj ,s is the standard fermion creation operator,SW j

5 1
2 s j
W is the particle-spin operator andnj is the particle-

number operator at sitej . The projection operatorP ex-
cludes the double occupation at each site. Unfortunately
exact integrability of Eq.~1! is obtained only at the super
symmetric pointJ52t.3–6 At this point the model has no
gap and the critical exponents governing the long-dista
behavior of correlation functions were calculated.7 These re-
sults show that for any density of holes the spin-spin co
lation functions dominate the superconducting ones, and
consequence the model has no superconducting prope
These results were extended to the SU(N) generalization of
the t-J model of fermions of arbitrary spinS.8–10 The inte-
grability of an anisotropic generalization of the SU(N) su-
persymmetrict-J model has been shown13,14 and the critical
exponents of the correlation functions have be
calculated.15,16

In this paper we present a set of models of stro
correlated electrons which are exactly solvable. The first
ample of these models is the spin-1 biquadratict-J model
with Hamiltonian given by

H52t(
j ,s

P~cj ,s
1 cj 11,s1cj 11,s

1 cj ,s!P

2J(
j

@~SW j•SW j 11!22njnj 11#, ~2!
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where nowSW j5(Sj
x ,Sj

y ,Sj
z) are spin-1 Pauli operators lo

cated at sitej . We show that this model is exactly integrab
at the special pointt5J. Actually the above Hamiltonian is
the isotropic version of a family of anisotropic models d
scribing the dynamics of spin-S fermions with Hamiltonian

H52(
j 51

L

(
s52S

S

P~cj ,s
1 cj 11,s1cj 11,s

1 cj ,s!P

2«(
j 51

L F (
s,t52S

S

usutcj ,s
1 cj ,tcj 11,2s

1 cj 11,2t

2~11«1!coshgnjnj 11G , ~3!

whereL is the lattice size,«,«1561 and the parametersus ,
which play the role of anisotropies should satisfyus

51/u2s (s52S,2S11, . . . , S) and 2 coshg5u2S
2

1u2S11
2 1•••1uS

2 . The particular caseS5 1
2 and«52«151

is the anisotropic version of the supersymmetrict-J model.
The biquadratict-J model, att5J, given in Eq.~2! is ob-
tained by choosing in Eq.~3! S51, «52«151 and u21
5u05u151. For general spinS the magnetic interactions
can be written as a polynomial of degree 2S in the spin
operators.

The exact integrability of these models, from a ma
ematical point of view, comes from the fact that the Ham
tonian density in Eq.~3! is related to the generators of Heck
algebras,17 with deformation parameterq given by the rela-
tion q11/q52 coshg.

The eigenstates and eigenvalues of Hamiltonian~3! can
be obtained exactly within the framework of the Beth
ansatz method.18–21 The structure of the Bethe-ansatz equ
tions follows from the solution of the two-particle problem
The two-electron wave function can be written as a prod
of two factors: a coordinate wave function~referring to the
positions and momenta of the particles! and a spin part, the
global wave function being antisymmetric under the e
change of two particles. The scattering matrix can be writ
in the following form:
7796 © 1997 The American Physical Society
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Sa8,b8
ab

~l12l2!5@11~11«1!coshgF~l12l2!#

3da,b8db,a82«1uaub8F~l12l2!

3da,2bdb8,2a8 , ~4!

where

F~l!52
sinl

sin~l2 ig!
~5!

andl j ( j 51,2, . . . ,n) are suitable particle rapidities relate
to the momenta$kj% of the electrons by

kj5H p2Q~l j ; 1
2 g!, ««1521,

2Q~l j ; 1
2 g!, ««1511,

~6!

with the functionQ defined by

Q~l;g!52 arctan~cotg tanl!; 2p,Q~l,g!<p.
~7!

A necessary and sufficient condition for the applicability
the Bethe ansatz method is the Yang-Baxter equation.18,21 In
our case theS-matrix satisfies these equations in the non
formed andq-deformed cases.17 The isotropic case corre
sponds forS. 1

2 to the q-deformed case whereus51(s5
2S, . . . ,S) andq11/q52S11. The underlying Hecke al
gebra of the model implies that differently from the sup
symmetric t-J model we should have gapped spin exci
tions for S>1. This model is an example of an integrab
model with theS-matrix of the form~4! which is connected
with the Hecke algebra. The Hamiltonian~3! is diagonalized
by standard procedure by imposing periodic boundary c
ditions on the Bethe function. These boundary conditions
be expressed in terms of the transfer matrix of the nonu
form model which can be constructed on the basis of
S-matrix ~4! by using the quantum method of the inver
problem.22,23 The rapidities $l j% that define an-particle
wave function are obtained by solving the equations

Fsinh~l j2 ig/2!

sinh~l j1 ig/2!G
L

5~21!n21L~l j !, ~8!

whereL(l) is the eigenvalue of the transfer matrix

T
$a l8%

$a l % ~l!5(
$b l %

)
l 51

n

S
a

l8b l

a lb l 11~l l2l!, ~bn115b1!. ~9!

It is simple to verify that besides the number of particlesn,
the magnetization( jSj

z and the number of paired electronsm
are conserved quantities in the Hamiltonian~3!. Two elec-
trons are paired if they are consecutive electrons with op
site spins and have no unpaired electron between them.
complete diagonalization of the transfer matrix~9! is not a
simple problem even in the simplest caseS51,n5L ~see, for
example, Ref. 24!. It is not difficult to convince ourselves
that in the interesting physical situation where we have l
density of holes the ground state will belong to the sec
where we have zero magnetization and only pairs of e
trons. In this sectorm5n/2 and the diagonalization of th
transfer matrix of the inhomogeneous model~9! gives for
«1521, the following equations:
f

-

-
-

-
n
i-
e

o-
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r
c-

Fsin~l j1 ig/2!

sin~l j2 ig/2!G
L

5~21!m21 )
a51

m
sin~l j2La1 ig/2!

sin~l j2La2 ig/2!
,

~10!

)
j 51

n
sin~l j2La2 ig/2!

sin~l j2La1 ig/2!
52 )

b51

m
sin~La2Lb1 ig!

sin~La2Lb2 ig!
.

In the case«1511 the first set of equations in Eq.~10!
should be replaced by

Fsin~l j1 ig/2!

sin~l j2 ig/2!G
L

5~21!m21)
l 51

n
sin~l j2l l1 ig!

sin~l j2l l2 ig!

3 )
a51

m
sin~l j2La2 ig/2!

sin~l j2La1 ig/2!
.

The total energy and momentum of the model are given
terms of the particle rapiditiesl j in the following form:

E522(
j 51

n

coskj52««1(
j 51

n S coshg2
sinh2g

coshg2cos2l j
D ,

~11!

P5(
j 51

n

k~l j !.

Equations~10! and ~11! have the same structure as tho
appearing in the anisotropict-J model15,16 provided a suit-
able definition of the parameterg is given. It means that in
spite of the physical processes in the models withS5 1

2 and
S. 1

2 being quite different there is a ‘‘weak equivalence’’
Baxter’s sense25 between models with different values o
spin S in the sector wherem5n/2. Of course in the genera
case this equivalence does not exist.

Although the models are exactly integrable for both sig
of « and«1 in Eq. ~3! let us now restrict to the more phys
cally interesting case«51 and«1521, where we have at-
traction among pairs. In this case the ground state cont
m5n/2 bound pairs characterized by a pair of complex el
tron rapidities

la
65

1

2
~va6 ig!, va52La . ~12!

The second set of equations in Eq.~10! is fullfilled within
exponential accuracy whereas the first set can be treate
the similar way as in Refs. 15, 16. Inserting Eq.~12! in the
first set of equations in Eq.~10! and introducing the density
function r(v) for the distribution ofva in the thermody-
namic limit, we obtain the linear integral equation

2pr~v !5F~v;g!2E
I
F~v2v8;g!r~v8!dv8, ~13!

where

F~v;g!5
sinh2g

cosh2g2coshv
. ~14!

In order to minimize the ground-state energy

E0

L
522«E

I
@2 coshg2sinhgF~v;g!#r~v !dv, ~15!
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the integration intervalI in Eqs. ~13! and ~15! has to be
chosen symmetrically aroundp(I 5@v0 ,2p2v0#). The pa-
rameterv0 is determined by the subsidiary condition for th
total densityr52m/L of electrons

E
I
r~v !dv5

1

2
r. ~16!

To study the superconducting properties of the model
der consideration we calculate the long-distance behavio
the correlation functions by finite-size studies and appli
tion of conformal field theory~see Refs. 26–28, and refe
ences therein!. The results of this calculation are the follow
ing. The long-distance behavior of the density-density a
the superconducting correlation functions are given by

^r~r !r~0!&.r21A1r 21A2r 2acos~2kFr !; 2kF5pr;
~17!

r~r !5(
g

crg
1 crg ,

~18!

Gr~r !5^crg
1 cr 11,2g

1 c0,dc1,2d&.Br2b.

The exponentsa and b describing the algebraic decay a
calculated from the dressed charge functionj(v) which is
given by the solution of the integral equation

j~v !512
1

2pEI
F~v2v8;g!j~v8!dv8, ~19!

and is given by

a5b2152@j~v0!#2. ~20!

In our one-dimensional system we have no supercond
tivity in the literal sense, since the model does not have fin
off-diagonal long-range order. But we may say that in o
model there is a tendency to superconductivity since the
perconducting correlations have a longer range than
density-density correlations. This happens whenb,a. Ana-
t

t

-
of
-

d

c-
e
r
u-
e

lytically we find a52 for (r50) and a5 1
2 for (r5rmax

51). This implies that for all nonzero values of the param
etersg there is a density regime@0,rc# where the system has
dominating superconducting correlations. An analogous
havior of correlation functions can also be observed in t
SU(N) generalization of the anisotropict-J model where
superconducting properties are caused by the introduction
anisotropy in the interactions. However unlike these mod
the superconducting properties in the Hamiltonians~3! are
caused by both effects, the anisotropy and the value of
spin S @see definition of the parameterg Eq. ~3!#. Moreover
in the present model for any value ofN (N52S11) we
have bound pairs but not complexes ofN bound particles as
in Ref. 16.

We conclude this paper with some remarks about the
tice vertex model counterpart of the quantum chain cons
ered here. The quantumR matrix has 113N12N2 nonzero
Boltzmann weights, which are given by

R00
0051, R0a

0a5Ra0
a05« sinhl/sinh~g2«1l!,

Ra0
0a5R0a

a05sinhg/sinh~g2«1l!, ~21!

Rgd
ab5@da,ddb,g1F~ il!uaudda,N2b11dd,N2g11#

3sinh~g2l!/sinh~g2«1l!,

where a,b51,2, . . . ,N. The associated spin Hamiltonia
can be found by taking the logarithmic derivative of the row
to-row transfer matrix atl50. It gives the Hamiltonian~3!
after a Jordan-Wigner transformation. Since we verified th
Eqs. ~21! satisfy the Yang-Baxter equations, the exact int
grability of Eq. ~3! is an immediate consequence. The abo
vertex model can be treated by the diagonal-to-diago
Bethe ansatz method,29,30But this is not the aim of this work.
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24A. Klümper, Europhys. Lett.9, 815 ~1989!; R. Köberle and A.
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