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Exact solution of the biquadratic spin-1t-J model in one dimension
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A generalization of the-J model with a nearest-neighbor hopping is formulated and solved exactly by the
Bethe ansatz method. The model describes the dynamics ofSsf@rmmions with isotropic or anisotropic
interactions. In the cas=1 the magnetic interaction is biquadratic in the spin operators. In contrast to the
SU(N) generalization of the-J model, studied previously in the literature, the present model possesses
beyond a massless excitation also a massive one. The physical properties indicate the existence of Cooper-type
pairs with finite binding energy.S0163-182@7)05538-0

The t-J model has emerged as a paradigm for studyingyhere now§j=(SjX,Sjy,SjZ) are spin-1 Pauli operators lo-

the low-energy electronic properties d%f the copper-oxidecated at sitg. We show that this model is exactly integrable
based high-temperature superconductoréithough high- 4t the special point=J. Actually the above Hamiltonian is
Tc cuprates are at least two-dimensional systems the ongge gotropic version of a family of anisotropic models de-

d|me_n3|0ngl versmn_of th_e m(_)del _and its generalizations argCribing the dynamics of spi§-fermions with Hamiltonian
also intensively studied since in this case exact results can be

derived® 12 The t-J model describes the dynamics of spin-
3 fermionic particles with Hamiltonian given by L
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where ¢; , is the standard fermion creation operat&;,

=%E)j is the particle-spin operator ang is the particle-

number operator at sitg. '_I'he projection operatoP ex-  \yherel is the lattice sizeg,e,=+ 1 and the parameters,,
cludes the double occupation at each site. Unfortunately thgich play the role of anisotropies should satisfg
exact integrability of Eq(1) is obtained only at the super- =1/u (s=—S,—S+1 S) and 2 cosh=u?
symmetric pointJ=2t.>=° At this point the model has no | > ~° " 2 3\ part7ic.u.la.1r, cass—? ande—— e —1
gap and the crltlca! exponents governing the Iong-dlstanc% tﬁgé\nisotrozic version of the superszymmetFixt m<l)del
behavior of correlation functions were calculatethese re- The biquadratid-J model, att=J, given in Eq.(2) is ob-.
sults show that for any density of holes the spin-spin corre. .o qb choosing in E(’](S) S=’19 _ :ql' andu
lation functions dominate the superconducting ones, and as_gu —u y—l For general s s thé Sma rTeltic interacﬁéns
consequence the model has no superconducting propertieE.nO_b 1\;“& N 9 | npmi | of d gr S th N
These results were extended to the B)J@eneralization of gZeraE)rs €n as a polynomial of degre € sp

the t- model of fermions of arbitrary spi.>”° The inte- The exact integrability of these models, from a math-
grability of an anisotropic generalization of the SU(su- '

: 4 > ematical point of view, comes from the fact that the Hamil-
persymmetrid-J model has been sho and the critical ; L .

. . tonian density in Eq(3) is related to the generators of Hecke

exponents of the correlation functions have been 7 . i

calculateds-16 algebras,’ with deformation parametag given by the rela-
' tion g+ 1/q=2 coshy.

In this paper we present a set of models of strong- : : .
correlated electrons which are exactly solvable. The first ex: The eigenstates and eigenvalues of Hamiltor{@ncan

: . . . be obtained exactly within the framework of the Bethe-
ample of these models is the spin-1 biquadratit model o1 i i
with Hamiltonian given by ansatz metho~2! The structure of the Bethe-ansatz equa

tions follows from the solution of the two-particle problem.
The two-electron wave function can be written as a product

H=—t> P(ct ¢ +ct . c P of two factors: a coordinate wave functiaﬁreferr_ing to the
j,z,r (€.0Ci+107 €4 10C).0) positions and momenta of the partiglend a spin part, the
global wave function being antisymmetric under the ex-
_\]; [(gj S, .)2— NN, ) change of two particles. The scattering matrix can be written

in the following form:
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><5a,ﬁ’5ﬁ,a’_Sluauﬁ’q)()\l_)\Z) S|r()\1_|’)//2) a=1 S|r()\j_Aa_|’)//2) (10)
X 8a,-pOp ~a s 4) osinN A, —iy2) T SinA—Agtiy)
where 1SN = A, +iy/2) g1 sin(A,—Ag—iy)’
Sim In the cases,;=+1 the first set of equations in E¢10)
d(N)=— S =17) (5)  should be replaced by
and\; (j=1,2,...n) are suitable particle rapidities related | SIN(A; +17/2) L:(_l)mfll_n[ Sin(Aj—At+iy)
to the momentdk;} of the electrons by Sin(\j—iy/2) =1 SIN(Nj— N —iy)

T—0O(\;3y), ee1=—1 Sin(\;— A ,—iy/2)

m
ki= (6) Ny | [ R ity
] —O(\j;3y), ee1i=+1, a=1 SIN\j— A, +iy/2)

The total energy and momentum of the model are given in

with the function® defined by terms of the particle rapidities; in the following form:

O(\;y)=2 arctaricoty tart\); —7<O(\,y)<. _
sintfy

n n
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A necessary and sufficient condition for the applicability of !

the Bethe ansatz method is the Yang-Baxter equafiéhin N

our case thé&s-matrix satisfies these equations in the nonde- P=" K\
formed andg-deformed case¥. The isotropic case corre- =1 I
sponds forS>1 to the g-deformed case wheres=1(s=
=S, ...,S andq+1/g=2S+1. The underlying Hecke al-
gebra of the model implies that differently from the super-
symmetrict-J model we should have gapped spin excita-
tions for S=1. This model is an example of an integrable
model with theS-matrix of the form(4) which is connected

(11)

Equations(10) and (11) have the same structure as those
appearing in the anisotropicJ modet®® provided a suit-
able definition of the parameter is given. It means that in
spite of the physical processes in the models \@ith; and
S> 1 being quite different there is a “weak equivalence” in

with the Hecke algebra. The Hamiltoni&B) is diagonalized Ba_xter_s sensé between models with d'ffefe”t values of

by standard procedure by imposing periodic boundary conSPInS in the ;ector wheren=n/2. O.f course in the general

ditions on the Bethe function. These boundary conditions caf@S€ this equivalence does not exist. .

be expressed in terms of the transfer matrix of the nonuni- , Although the models are exactly integrable for both signs

form model which can be constructed on the basis of thé?"c & a_mdsl n Eq. (3) let us now restrict to the more physi-

Smatrix (4) by using the quantum method of the inverse Cally interesting case=1 ande,;=—1, where we have at-

problem?223 The rapidities{\;} that define an-particle traction among pairs. In this case the grqund state contains

wave function are obtained by solving the equations m=n/2 pqgnd pairs characterized by a pair of complex elec-
tron rapidities

L

sinh(\j—iy/2) =(=D" AN, (8)

sinh(\; +1y/2)

1
xgzz(uaiiy), Va=2A,. (12)

whereA()) is the eigenvalue of the transfer matrix The second set of equations in EA0) is fullfilled within

n exponential accuracy whereas the first set can be treated in
T:',}}()\)ZE H SZ'@“(M—)\)’ (Bhs1=B1). (9 the similar way as in.Refs. 15, 16._Insertin_g Ef2) in the_
! {g}1=1 %~ first set of equations in Eq10) and introducing the density

function p(v) for the distribution ofv, in the thermody-

It is simple to verify that besides the number of partiates coL X ; . :
P ty partiatis namic limit, we obtain the linear integral equation

the magnetizatioEijZ and the number of paired electroms
are conserved quantities in the Hamiltonig). Two elec-
trons are paired if they are consecutive electrons with oppo- 2mp(v)=D(v;y)— f@(v—v’;’y)p(v')dv', (13
site spins and have no unpaired electron between them. The !

complete diagonalization of the transfer mat(® is not a  \yhere

simple problem even in the simplest c&e1,n=L (see, for

example, Ref. 24 It is not difficult to convince ourselves sinh2y

that in the interesting physical situation where we have low ;)= cosh2y—cosh
density of holes the ground state will belong to the sector

where we have zero magnetization and only pairs of elecln order to minimize the ground-state energy
trons. In this sectom=n/2 and the diagonalization of the

transfer matrix of the inhomogeneous mod@) gives for E:
g;=—1, the following equations: L

(14)

—2&J|[2 coshy—sinhy® (v; y)]p(v)dv, (15
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the integration interval in Egs. (13) and (15) has to be Iytically we find a=2 for (p=0) and a=3 for (p=pmax

chosen symmetrically around(l=[vo,2m—vo]). The pa-  =1) This implies that for all nonzero values of the param-
rameterv, is determined by the subsidiary condition for the gtersy there is a density regin{é®,p.] where the system has
total densityp=2m/L of electrons dominating superconducting correlations. An analogous be-

havior of correlation functions can also be observed in the
1 SU(N) generalization of the anisotropicJ model where
le(v)dv — P (16) superconducting properties are caused by the introduction of
anisotropy in the interactions. However unlike these models
To study the superconducting properties of the model unthe superconducting properties in the Hamiltoni&Bs are
der consideration we calculate the long-distance behavior gfaused by both effects, the anisotropy and the value of the
the correlation functions by finite-size studies and applicaspin S [see definition of the parametgrEg. (3)]. Moreover
tion of conformal field theorysee Refs. 26—28, and refer- in the present model for any value &f (N=2S+1) we
ences therein The results of this calculation are the follow- have bound pairs but not complexesibound particles as
ing. The long-distance behavior of the density-density andn Ref. 16.

the superconducting correlation functions are given by We conclude this paper with some remarks about the lat-
tice vertex model counterpart of the quantum chain consid-
i 2
(p(r)p(0)y=p2+Agr2+ Ayt ~cog 2ker):  2Kp=p; ered here. The quantuR matrix has # 3N+ 2N“ nonzero

(17) Boltzmann weights, which are given by

RO=1, R3*=R%=¢ sint\/sinh(y—&,\),
P(r)zz C:iycr'yv
Y
(18) R%¢=Ra%=sinhy/sinh(y—&\), (21)

+ At -
Gp(r) = <Crycr+l,— yCO,écl,— 5>: Br .

R*=[6, 505 ,+ P(INULUs5, N—5+105N-
The exponentgy and 8 describing the algebraic decay are 70~ L0052 P( s0an-pridan-y+il
calculated from the dressed charge functé{n) which is Xsinh(y—N\)/sinh(y—eg1\),

given by the solution of the integral equation where «,8=1,2,... N. The associated spin Hamiltonian

1 can be found by taking the logarithmic derivative of the row-
_ . , , to-row transfer matrix ah =0. It gives the Hamiltoniarn3)
§w)=1- EJ.CD(U —vh e’ 19 Ltera Jordan-Wigner transformation. Since we verified that
Egs.(21) satisfy the Yang-Baxter equations, the exact inte-
grability of Eq. (3) is an immediate consequence. The above
vertex model can be treated by the diagonal-to-diagonal
a=pB"1=2[&(vy)]% (200  Bethe ansatz methdd:>°But this is not the aim of this work.

and is given by

In our one-dimensional system we have no superconduc- This work was supported in part by Conselho Nacional de
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off-diagonal long-range order. But we may say that in ourAmparo aPesquisa do Estado dé@Raulo, FAPESP, Bra-
model there is a tendency to superconductivity since the steil, and by the Russian Foundation of Fundamental Investi-
perconducting correlations have a longer range than thgations under Grant No. RFFI 97-02-16146. We would like
density-density correlations. This happens wigena. Ana-  to thank Dr. H. Babujian for discussions.
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