

Principle and practice of instrument control in neutron facilities the NICOS system

Jens Krüger

• Completely different types of instruments

- Completely different types of instruments
 - Triple axes

- Completely different types of instruments
 - Triple axes
 - Diffractometer

- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer

- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering

- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering
 - Tomography

- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering
 - Tomography
 - —

. . .

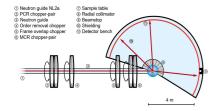
- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering
 - Tomography
 - ...
- Every instrument is unique!

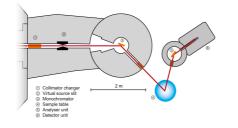
- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering
 - Tomography
 - ...
- Every instrument is unique!
- Unified (or standardized) instrument control ?

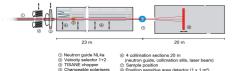
- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering
 - Tomography
 - ...
- Every instrument is unique!
- Unified (or standardized) instrument control ?
 Typical answer: No way!

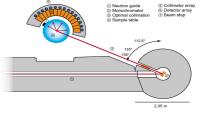
- Completely different types of instruments
 - Triple axes
 - Diffractometer
 - Reflectometer
 - Small angle scattering
 - Tomography
 - ...
- Every instrument is unique!
- Unified (or standardized) instrument control ?
 Typical answer: No way!
 - My answer: Possible

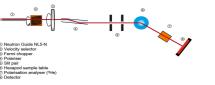
• Completely different types of instruments








Completely different types of instruments ٠



- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)
 - Preset a monitor, counter, detector, ...

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)
 - Preset a monitor, counter, detector, ...
 - Start/Stop a monitor, counter, detector, ...

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)
 - Preset a monitor, counter, detector, ...
 - Start/Stop a monitor, counter, detector, ...
 - Wait for finishing of a movement and/or counting

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)
 - Preset a monitor, counter, detector, ...
 - Start/Stop a monitor, counter, detector, ...
 - Wait for finishing of a movement and/or counting
 - Store signal(s), additional (meta) data (positions, fields, temperature, ...), logs

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)
 - Preset a monitor, counter, detector, ...
 - Start/Stop a monitor, counter, detector, ...
 - Wait for finishing of a movement and/or counting
 - Store signal(s), additional (meta) data (positions, fields, temperature, ...), logs
 - \rightarrow Group steps in sequences or more complex devices

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
 - Move/Drive a motor/axis
 - Move/Switch a switch
 - Move/Drive a voltage/current
 - Move/Drive a temperature/field (magnetic, electric)
 - Preset a monitor, counter, detector, ...
 - Start/Stop a monitor, counter, detector, ...
 - Wait for finishing of a movement and/or counting
 - Store signal(s), additional (meta) data (positions, fields, temperature, ...), logs
 - \rightarrow Group steps in sequences or more complex devices

Higher level actions: Counts, Scans, ...

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
- Huge number of devices to handle

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
- Huge number of devices to handle
 - Motors: dozens of axes are involved and some have to move "synchronised"

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
- Huge number of devices to handle
 - Motors: dozens of axes are involved and some have to move "synchronised"
 - Detectors for neutrons and other signals

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
- Huge number of devices to handle
 - Motors: dozens of axes are involved and some have to move "synchronised"
 - Detectors for neutrons and other signals
 - Many additional (complex) devices:

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
- Huge number of devices to handle
 - Motors: dozens of axes are involved and some have to move "synchronised"
 - Detectors for neutrons and other signals
 - Many additional (complex) devices:

cryostats, magnets, furnaces, frequency generators, sample changer, ...

- Completely different types of instruments
- Many (in some cases configurable) steps for a single measurement
- Huge number of devices to handle
 - Motors: dozens of axes are involved and some have to move "synchronised"
 - Detectors for neutrons and other signals
 - Many additional (complex) devices:

cryostats, magnets, furnaces, frequency generators, sample changer, ...

• Operation with (external) users!

- Highly automated
 - Goal: achieve a smooth operation

- Highly automated
 - Goal: achieve a smooth operation
- All hardware components have to be monitored
 - Goal: reproduce the state

- Highly automated
 - Goal: achieve a smooth operation
- All hardware components have to be monitored
 - Goal: reproduce the state
- External users must be able to operate the system within a short time
 - Goal: Effective use of measurement time

- Highly automated
 - Goal: achieve a smooth operation
- All hardware components have to be monitored
 - Goal: reproduce the state
- External users must be able to operate the system within a short time
 - Goal: Effective use of measurement time
- Integrate new devices very quickly
 - Goal: Short reaction time to new requests

Requirements to Instrument control

- Highly automated
 - Goal: achieve a smooth operation
- All hardware components have to be monitored
 - Goal: reproduce the state
- External users must be able to operate the system within a short time
 - Goal: Effective use of measurement time
- Integrate new devices very quickly
 - Goal: Short reaction time to new requests
- Common, but flexible
 - Goal: Users need an interface with ability to program

Instrument Control solutions

• Different solutions on market at the Neutron facilities

Instrument Control solutions

- Different solutions on market at the Neutron facilities
- One of them is

• Python is implementation and user language

- Python is implementation and user language
- NICOS knows
 - Devices (implemented as Python objects)
 - Commands (for routine tasks with full freedom of use)

- Python is implementation and user language
- NICOS knows
 - Devices (implemented as Python objects)
 - Commands (for routine tasks with full freedom of use)
- Reconfiguration at runtime with different setups

- Python is implementation and user language
- NICOS knows
 - Devices (implemented as Python objects)
 - Commands (for routine tasks with full freedom of use)
- Reconfiguration at runtime with different setups
- Full "dry run" mode for error checking and timing
 - Syntax checks
 - Limit checks
 - Runtime estimation

- Python is implementation and user language
- NICOS knows
 - Devices (implemented as Python objects)
 - Commands (for routine tasks with full freedom of use)
- Reconfiguration at runtime with different setups
- Full "dry run" mode for error checking and timing
 - Syntax checks
 - Limit checks
 - Runtime estimation
- State collection and automatic archiving

- Python is implementation and user language
- NICOS knows
 - Devices (implemented as Python objects)
 - Commands (for routine tasks with full freedom of use)
- Reconfiguration at runtime with different setups
- Full "dry run" mode for error checking and timing
 - Syntax checks
 - Limit checks
 - Runtime estimation
- State collection and automatic archiving
- Different user interfaces: configurable GUI, console

- Python is implementation and user language
- NICOS knows
 - Devices (implemented as Python objects)
 - Commands (for routine tasks with full freedom of use)
- Reconfiguration at runtime with different setups
- Full "dry run" mode for error checking and timing
 - Syntax checks
 - Limit checks
 - Runtime estimation
- State collection and automatic archiving
- Different user interfaces: configurable GUI, console
- Hardware "independent" (TANGO, EPICS, SECoP, CARESS, ...)

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured
- 2013 MLZ decision, NICOS is standard control system

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured
- 2013 MLZ decision, NICOS is standard control system
- 2015 collaboration with ESS started

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured
- 2013 MLZ decision, NICOS is standard control system
- 2015 collaboration with ESS started
- 2018 PSI joined the NICOS developer group

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured
- 2013 MLZ decision, NICOS is standard control system
- 2015 collaboration with ESS started
- 2018 PSI joined the NICOS developer group
- 2018 INL (US, Aaron Craft) joined the NICOS users group

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured
- 2013 MLZ decision, NICOS is standard control system
- 2015 collaboration with ESS started
- 2018 PSI joined the NICOS developer group
- 2018 INL (US, Aaron Craft) joined the NICOS users group
- 2019/2020 MGML (Charles University Prague), LAHN (Argentina) facility, and TU Vienna started to use NICOS

- NICOS (Networked Instrument COntrol System) started in 2002
- Ran on 5 instruments
- Very simple, not a client/server system
- Diverged lines of development and code states (CVS, not code review)
- 2009 discussions about modernizing between user and instrument control groups, start rewriting of NICOS (client/server and GUI), first commit 2009/11/10
- 2011 switch to git/gerrit/Jenkins/Redmine in the development
- 2012 "NICOS 2" was stable and fully featured
- 2013 MLZ decision, NICOS is standard control system
- 2015 collaboration with ESS started
- 2018 PSI joined the NICOS developer group
- 2018 INL (US, Aaron Craft) joined the NICOS users group
- 2019/2020 MGML (Charles University Prague), LAHN (Argentina) facility, and TU Vienna started to use NICOS
- 2025 BNC ?

- Accessibility:
 - Powerful to "power users"
 - Easy to learn for new users

- Accessibility:
 - Powerful to "power users"
 - Easy to learn for new users
- Flexibility:
 - Integration of devices by instrument scientists
 - Quick reaction to new experiment conditions

- Accessibility:
 - Powerful to "power users"
 - Easy to learn for new users
- Flexibility:
 - Integration of devices by instrument scientists
 - Quick reaction to new experiment conditions
- Reliability:
 - Permanent storing of experiment state
 - Recovering previous state

- Accessibility:
 - Powerful to "power users"
 - Easy to learn for new users
- Flexibility:
 - Integration of devices by instrument scientists
 - Quick reaction to new experiment conditions
- Reliability:
 - Permanent storing of experiment state
 - Recovering previous state
- Lightweight:
 - Less code is better
 - Reuse existing code as much as possible
 - Better to configure than to code

- Network based:
 - Multi client
 - Multi user

- Network based:
 - Multi client
 - Multi user
- Science driven
 - Close cooperation with instrument scientists and/or users
 - No feature without any need

- Network based:
 - Multi client
 - Multi user
- Science driven
 - Close cooperation with instrument scientists and/or users
 - No feature without any need
- Open source
 - Everybody is welcome to use and contribute

• Triple axes

- Triple axes
- Reflectometer (Neutrons and X-Ray)

- Triple axes
- Reflectometer (Neutrons and X-Ray)
- Tomography

- Triple axes
- Reflectometer (Neutrons and X-Ray)
- Tomography
- Powder diffractometer

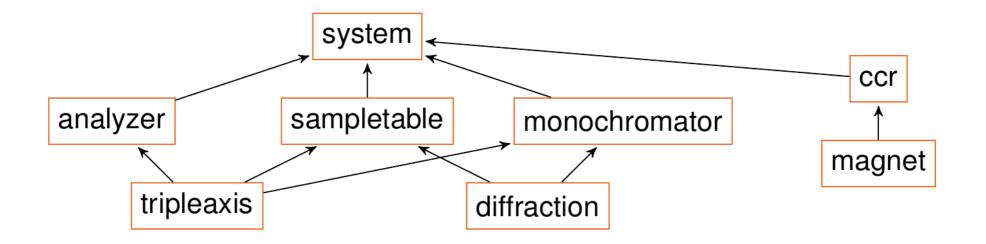
- Triple axes
- Reflectometer (Neutrons and X-Ray)
- Tomography
- Powder diffractometer
- Residual stress (Neutron and X-Ray)

- Triple axes
- Reflectometer (Neutrons and X-Ray)
- Tomography
- Powder diffractometer
- Residual stress (Neutron and X-Ray)
- Single crystal spectrometer

- Triple axes
- Reflectometer (Neutrons and X-Ray)
- Tomography
- Powder diffractometer
- Residual stress (Neutron and X-Ray)
- Single crystal spectrometer
- Small angle scattering

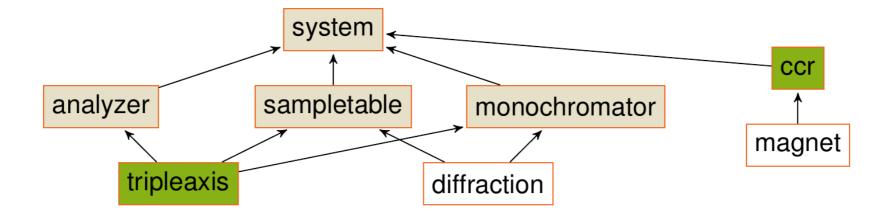
- Triple axes
- Reflectometer (Neutrons and X-Ray)
- Tomography
- Powder diffractometer
- Residual stress (Neutron and X-Ray)
- Single crystal spectrometer
- Small angle scattering
- •

• Configuration of an instrument is divided into several "setups"

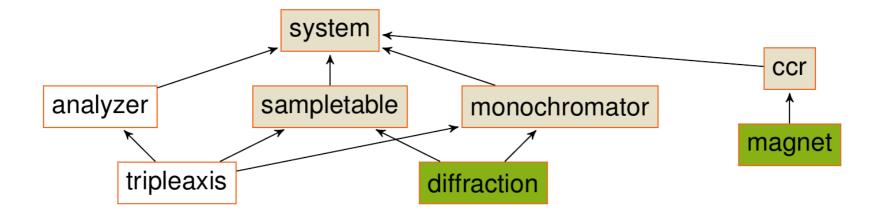


- Configuration of an instrument is divided into several "setups"
- A setup is a simple Python file defining devices and their parameters

```
description = 'MIRA1 monochromator'
group = 'lowlevel'
includes = ['base', 'sample', 'alias mono']
tango base = 'tango://miractrl.mira.frm2.tum.de:10000/mira/'
devices = dict(
    co mltt = device('nicos.devices.entangle.Sensor',
        visibility = (),
        tangodevice = tango base + 'monol/mtt enc',
        unit = 'deq',
        precision = 0.05,
    ),
    mo mltt = device('nicos.devices.entangle.Motor',
        tangodevice = tango_base + 'monol/mtt_mot',
        visibility = (),
        precision = 0.05,
    ),
    mltt = device('nicos mlz.mira.devices.axis.HoveringAxis',
        description = 'monochromator two-theta angle',
        abslimits = (-50.0, 0),
        motor = 'mo mltt',
        coder = 'co mltt',
        startdelay = 1,
        stopdelay = 4,
        switch = 'air mono',
        switchvalues = (0, 1),
        fmtstr = '\%.3f',
        precision = 0.05,
    ),
```



- Configuration of an instrument is divided into several "setups"
- A setup is a simple Python file defining devices and their parameters
- A setup may depend on other setups (used or use)

- Configuration of an instrument is divided into several "setups"
- A setup is a simple Python file defining devices and their parameters
- A setup may depend on other setups (used or use)


```
NewSetup('tripleaxis', 'ccr')
```


- Configuration of an instrument is divided into several "setups"
- A setup is a simple Python file defining devices and their parameters
- A setup may depend on other setups (used or use)

NewSetup('diffraction', 'magnet')

• NICOS encapsulates access to hardware in "Devices"

- NICOS encapsulates access to hardware in "Devices"
- Each device will be represented by a configurable Python class

- NICOS encapsulates access to hardware in "Devices"
- Each device will be represented by a configurable Python class
- NICOS has a hierarchy of devices with a set of base classes
 - define the interface, which has to implemented in derived classes

- NICOS encapsulates access to hardware in "Devices"
- Each device will be represented by a configurable Python class
- NICOS has a hierarchy of devices with a set of base classes
 - define the interface, which has to implemented in derived classes
- A number of generic device and helper classes

- NICOS encapsulates access to hardware in "Devices"
- Each device will be represented by a configurable Python class
- NICOS has a hierarchy of devices with a set of base classes
 - define the interface, which has to implemented in derived classes
- A number of generic device and helper classes
- Device classes may inherite other classes or simply use them

- NICOS encapsulates access to hardware in "Devices"
- Each device will be represented by a configurable Python class
- NICOS has a hierarchy of devices with a set of base classes
 - define the interface, which has to implemented in derived classes
- A number of generic device and helper classes
- Device classes may inherite other classes or simply use them
- Configuration parameters:
 - Device parameters (read/write access during runtime)
 - Values and their changes will be archived

- NICOS encapsulates access to hardware in "Devices"
- Each device will be represented by a configurable Python class
- NICOS has a hierarchy of devices with a set of base classes
 - define the interface, which has to implemented in derived classes
- A number of generic device and helper classes
- Device classes may inherite other classes or simply use them
- Configuration parameters:
 - Device parameters (read/write access during runtime)
 - Values and their changes will be archived
- Device value and status will be automatically archived

• Most basic user interface: Python **command** prompt

- Most basic user interface: Python **command** prompt
- Simple commands:
 - read(device), move(device, target), status(device),...

- Most basic user interface: Python **command** prompt
- Simple commands:
 - read(device), move(device, target), status(device),...
- Scanning commands:
 - scan(device, start, step, num, preset), ...

- Most basic user interface: Python **command** prompt
- Simple commands:
 - read(device), move(device, target), status(device),...
- Scanning commands:
 - scan(device, start, step, num, preset), ...
- Integrated help system:
 - help(object), ListDevices(), ListSetups(),...

- Most basic user interface: Python **command** prompt
- Simple commands:
 - read(device), move(device, target), status(device),...
- Scanning commands:
 - scan(device, start, step, num, preset), ...
- Integrated help system:
 - help(object), ListDevices(), ListSetups(),...
- Python control structures
 - loops, conditions, variables, …

- Most basic user interface: Python **command** prompt
- Simple commands:
 - read(device), move(device, target), status(device),...
- Scanning commands:
 - scan(device, start, step, num, preset), ...
- Integrated help system:
 - help(object), ListDevices(), ListSetups(),...
- Python control structures
 - loops, conditions, variables, ...
- Execution environment is safe against user errors
 - no overriding of devices and commands

• Client-Server architecture: more than one connection possible

- Client-Server architecture: more than one connection possible
- Command line window

Connect 💽 Exit	🛿 View 🧧 📝 Editor 💽 Scans 🛴 History	Live data	LOGDOOK	Log mes	U Errors	. wate	naog	u ~ 🖬 ~ 😡		Experiment Info	rmation and Fo	1		
mmand line										Proposal		rtup		
qcscan((1, 0, 0, 0),	(0.002, 0, 0, 0), 10, t=1, kf=1.4)								▷ <u>D</u> ry run ▶ <u>R</u> un					
ost command: Davisa	Scap Other									User	e NICOS demo	experiment		
lect command: De <u>v</u> ice	Scan Other											onitz <heinz.maier-leibnitz(< td=""><td>©frm2.tum.de></td><td></td></heinz.maier-leibnitz(<>	©frm2.tum.de>	
										Setups	tas			
										Samples	Gd3CdB7			
										Julipics	Guscusi			
										Environments				
										Detector	s vdet			
: qcscan((1, 0, 0,	0), (0.002, 0, 0, 0), 10, t=1, kf=1.4)									Scan	s T, Ts			
										Demark				
										Remark				
										NICOS devices				
										Enter search ex	pression			
:29:37] (Sim) Scan n	art :: Waiting :: estimated 1 second left / kf -> 1.400, umper : v										pression			
:29:37] (sim) :29:37] (sim) #	h k l E mono		th phi		Ts	t t	mon	ctr		Name		Value	Status	
:29:37] (sim)	rlu rlu rlu meV A-1	A-1 d	eg deg	к	К	S	cts	cts		∽- 💥 cryo				
:29:37] (sim) tas	: powder line from 2ki: Cu 2,0,0 at 76.	736 deg								- • T		2.001 K		
:29:37] (sim) 1/21 :29:37] (sim) tas	0.9800 -0.0000 0.0000 0.0000 1.40 : powder line from 2ki: Cu 2,0,0 at 76	736 deg	08.926 77.852		2.001	0.000	Θ	0		→ Ts → 🕉 source		2.001 K		
:29:37] (sim) 2/21 :29:37] (sim) tas	0.9820 -0.0000 0.0000 0.0000 1.40 : powder line from 2ki: Cu 2,0,0 at 76		09.021 78.041	2.001	2.001	0.000	0	Θ		Source Reacte	Power	19.845 MW	idle	
:29:37] (sim) 3/21 :29:37] (sim) tas	0.9840 -0.0000 0.0000 0.0000 1.40 : powder line from 2ki: Cu 2,0,0 at 76.	0 1.400 3	09.115 78.231	2.001	2.001	0.000	0	Θ		v- 💥 system	n Fower	19.049 1919	luie	
:29:37] (sim) 4/21	0.9860 -0.0000 0.0000 0.0000 1.40	0 1.400 3	09.210 78.420	2.001	2.001	0.000	0	Θ		o demo				
:29:37] (sim) tas :29:37] (sim) 5/21	: powder line from 2ki: Cu 2,0,0 at 76. 0.9880 -0.0000 0.0000 0.0000 1.40	0 1.400 3	09.305 78.610	2.001	2.001	0.000	Θ	Θ		V-O Exp				
:29:37] (sim) 6/21 :29:37] (sim) 7/21	0.9900 -0.0000 0.0000 0.0000 1.40		09.400 78.800 09.495 78.990	2.001 2.001	2.001 2.001	0.000	0	0		lastpo	int	0		
:29:37] (sim) 8/21 :29:37] (sim) 9/21	0.9940 -0.0000 0.0000 0.0000 1.40	0 1.400 3	09.590 79.181 09.686 79.372		2.001 2.001	0.000	0	0 0		lastsca	in	0		
:29:37] (sim) 10/21	0.9980 -0.0000 0.0000 0.0000 1.40	0 1.400 3	09.781 79.563	2.001	2.001	0.000	0	0		- 🔵 Sampl	e	Gd3CdB7		
:29:37] (sim) tas :29:37] (sim) tas	: possible type M spurion with scatters : possible type A spurion with scatters	ng vector [1.00	0, -0.000, 0.00	0]						Space		194.867 GiB	194.87 GiB free	
:29:37] (sim) 11/21 :29:37] (sim) tas	1.0000 -0.0000 0.0000 0.0000 1.40 : possible type M spurion with scatters				2.001	0.000	Θ	θ		O UBahı	ı	7, 17, 27, 37, 47 min		
:29:37] (sim) tas :29:37] (sim) 12/21	: possible type A spurion with scatters 1.0020 0.0000 0.0000 0.0000 1.40	ng vector [1.00	2, 0.000, 0.000]	2.001	0.000	A	0		∽-∦ tas				
:29:37] (sim) tas	: possible type M spurion with scatters	ng vector [1.00	4, 0.000, 0.000]	2.001	0.000	Ů	Ū		- 🔵 alpha		0.000 deg	idle	
:29:37] (sim) tas :29:37] (sim) 13/21	: possible type A spurion with scatters 1.0040 0.0000 0.0000 0.0000 1.40	0 1.400 3	10.069 80.137	2.001	2.001	0.000	0	0		- O ana		1.409 A-1	theta=idle, twotheta=virtual moving	
:29:37] (sim) tas :29:37] (sim) tas	: possible type M spurion with scatters : possible type A spurion with scatters									- o ath		-41.978 deg	idle	
:29:37] (sim) 14/21 :29:37] (sim) tas	1.0060 0.0000 0.0000 0.0000 1.40 : possible type M spurion with scatter	0 1.400 3	10.165 80.330	2.001	2.001	0.000	0	Θ		- O att		-83.518 deg None	virtual moving chi=idle, omega=idle	
:29:37] (sim) tas	: possible type A spurion with scatteri	ng vector [1.00	8, -0.000, 0.00	0]			HIII			ec		0.000 deg	ide	
:29:37] (sim) 15/21 :29:37] (sim) 16/21	1.0080 -0.0000 0.0000 0.0000 1.40 1.0100 0.0000 0.0000 0.0000 1.40	0 1.400 3		2.001	2.001 2.001	0.000	0	0		- Ef		4.116 meV	theta=idle, twotheta=virtual moving	
:29:37] (sim) 17/21 :29:37] (sim) 18/21	1.0120 -0.0000 0.0000 0.0000 1.40 1.0140 -0.0000 0.0000 0.0000 1.40		10.454 80.908 10.550 81.101	2.001 2.001	2.001 2.001	0.000	0	0 0		- Ei		4.978 meV	theta=idle, twotheta=idle	
:29:37] (sim) 19/21 :29:37] (sim) 19/21 :29:37] (sim) 20/21		0 1.400 3	10.647 81.294	2.001 2.001	2.001	0.000	0	0	22	- ephi		0.000 deg	idle	
:29:37] (sim) 21/21	1.0200 0.0000 0.0000 0.0000 1.40	0 1.400 3	10.841 81.682	2.001	2.001	0.000	0	0		- O kf		1.409 A-1	theta=idle, twotheta=virtual moving	
	ed at: 2021-07-16 11:29:37						THE		2112:51	- o ki		1.550 A-1	theta=idle, twotheta=idle	
	n finished									- C Lad		400.000 mm		

🖡 Connect 🛛 🧊 🖗 Exit 🖉	View 🥥 📝 Editor 🔤 Scans 👩 History 🏙 Live data 📃 Logbook 📃 Log files	Errors	Watch	ndog 🔲 🔳	~ 🔲 ~ 🙆						
mmand line		•	-				Experiment Infor	mation and Set	an		
mmand line								p0			
qcscan((1, 0, 0, 0),	(0.002, 0, 0, 0), 10, t=1, kf=1.4)					▷ <u>D</u> ry run ▶ <u>R</u> un		· /	· · · · · ·		
ct command: De <u>v</u> ice	Scan Other						Users		xperiment		
ect command: Device	Scan Other								itz <heinz.maier-leibnitz< td=""><td>@frm2.tum.de></td><td></td></heinz.maier-leibnitz<>	@frm2.tum.de>	
							Setups	tas			
							Samples	Gd3CdB7			
							Environments				
qcscan((1, 0, 0, 6	0), (0.002, 0, 0, 0), 10, t=1, kf=1.4)						Detectors	vdet			
							Scans	T, Ts			
							Remar <u>k</u>				
							NICOS devices				
	art :: Waiting :: estimated 1 second left / kf -> 1.400, ana -> 1.400, att -> -83.957						Enter search exp	ression			
							Name		Value	Status	
29:37] (sim) # 29:37] (sim)	h k l E mono ana sth phi T rlu rlu rlu meV A-1 A-1 deg deg K	Ts K	t s	mon cts	ctr cts		∽- 💥 cryo				
29:37] (sim) 29:37] (sim) tas	: powder line from 2ki: Cu 2,0,0 at 76.736 deg						— 🔵 Т		2.001 K		
29:37] (sim) 1/21 29:37] (sim) tas	0.9800 -0.0000 0.0000 0.0000 1.400 1.400 308.926 77.852 2.001 : powder line from 2ki: Cu 2,0,0 at 76.736 deg	2.001	0.000	0	θ		Ts		2.001 K		
29:37] (sim) 2/21	0.9820 -0.0000 0.0000 0.0000 1.400 1.400 309.021 78.041 2.001	2.001	0.000	0	θ		∽- 🐹 source				
:29:37] (sim) tas :29:37] (sim) 3/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9840 -0.0000 0.0000 0.0000 1.400 1.400 309.115 78.231 2.001	2.001	0.000	0	Θ		Reacto	rPower	19.845 MW	idle	
29:37] (sim) tas 29:37] (sim) 4/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9860 -0.0000 0.0000 0.0000 1.400 1.400 309.210 78.420 2.001	2.001	0.000	0	0		∽ 💥 system				
29:37] (sim) tas 29:37] (sim) 5/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9880 -0.0000 0.0000 0.0000 1.400 1.400 309.305 78.610 2.001	2.001	0.000	0	9		o demo				
:29:37] (sim) 6/21	0.9900 -0.0000 0.0000 0.0000 1.400 1.400 309.400 78.800 2.001	2.001	0.000	0	0		V-O Exp	t	0		
29:37] (sim) 7/21 29:37] (sim) 8/21	0.9920 0.0000 0.0000 0.0000 1.400 1.400 309.495 78.990 2.001 0.9940 -0.0000 0.0000 0.0000 1.400 1.400 309.590 79.181 2.001	2.001 2.001	0.000	0	0		lastsca		0		
29:37] (sim) 9/21 29:37] (sim) 10/21	0.9960 0.0000 0.0000 0.0000 1.400 1.400 309.686 79.372 2.001 0.9980 -0.0000 0.0000 0.0000 1.400 1.400 309.781 79.563 2.001	2.001 2.001	0.000	0	0		Sample		Gd3CdB7		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.000, -0.000, 0.000]	1.60.6			-		Space		194.867 GiB	194.87 GiB free	
29:37] (sim) 11/21	: possible type A spurion with scattering vector [1.000, -0.000, 0.000] 1.0000 -0.0000 0.0000 0.0000 1.400 1.400 309.877 79.754 2.001	2.001	0.000	Θ	θ		UBahn		7, 17, 27, 37, 47 min		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.002, 0.000, 0.000] : possible type A spurion with scattering vector [1.002, 0.000, 0.000]						∽- 💥 tas				
29:37] (sim) 12/21 29:37] (sim) tas	1.0020 0.0000 0.0000 0.0000 1.400 1.400 309.973 79.946 2.001 : possible type M spurion with scattering vector [1.004, 0.000, 0.000]	2.001	0.000	Θ	θ		🔵 alpha		0.000 deg	idle	
29:37] (sim) tas	: possible type A spurion with scattering vector [1.004, 0.000, 0.000]	HUP		11111138			- 😑 ana		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) 13/21 29:37] (sim) tas	1.0040 0.0000 0.0000 0.0000 1.400 1.400 310.069 80.137 2.001 : possible type M spurion with scattering vector [1.006, 0.000, 0.000]	2.001	0.000	Θ	0		🔵 ath		-41.978 deg	idle	
29:37] (sim) tas 29:37] (sim) 14/21	: possible type A spurion with scattering vector [1.006, 0.000, 0.000] 1.0060 0.0000 0.0000 0.0000 1.400 1.400 310.165 80.330 2.001	2.001	0.000	0	0		🔵 att		-83.518 deg	virtual moving	
29:37] (sim) tas	: possible type M spurion with scattering vector [1.008, -0.000, 0.000]					·	- 🔵 ec		None	chi=idle, omega=idle	
29:37] (sim) tas 29:37] (sim) 15/21	: possible type A spurion with scattering vector [1.008, -0.000, 0.000] 1.0080 -0.0000 0.0000 0.0000 1.400 1.400 310.261 80.522 2.001	2.001	0.000	0	0		echi 🔵		0.000 deg	idle	
29:37] (sim) 16/21 29:37] (sim) 17/21	1.0100 0.0000 0.0000 0.0000 1.400 1.400 310.357 80.715 2.001 1.0120 -0.0000 0.0000 0.0000 1.400 1.400 310.454 80.908 2.001	2.001 2.001	0.000	0	0		- 😑 Ef		4.116 meV	theta=idle, twotheta=virtual moving	
29:37] (sim) 18/21	1.0140 -0.0000 0.0000 0.0000 1.400 1.400 310.550 81.101 2.001	2.001	0.000	0	0	20	- 🔵 Ei		4.978 meV	theta=idle, twotheta=idle	
29:37] (sim) 19/21 29:37] (sim) 20/21	1.0160 -0.0000 0.0000 0.0000 1.400 1.400 310.647 81.294 2.001 1.0180 -0.0000 0.0000 1.400 1.400 310.744 81.488 2.001	2.001 2.001	0.000	0	0 0		🔵 ephi		0.000 deg	idle	
29:37] (sim) 21/21 29:37] (sim)	1.0200 0.0000 0.0000 0.0000 1.400 1.400 310.841 81.682 2.001	2.001	0.000	0	0		─ ○ kf		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) Finishe	ed at: 2021-07-16 11:29:37			12			— 🔵 ki		1.550 A-1	theta=idle, twotheta=idle	
29:37] (sim) ====== 29:37] (sim) Dry run) finished						-O Lad		400.000 mm		

🖡 Connect 🛛 🧊 🖗 Exit 🖉	View 🥥 📝 Editor 🔤 Scans 👩 History 🏙 Live data 📃 Logbook 📃 Log files	Errors	Watch	ndog 🔲 🔳	~ 🔲 ~ 🙆						
mmand line		•	-				Experiment Infor	mation and Set	an		
mmand line								p0			
qcscan((1, 0, 0, 0),	(0.002, 0, 0, 0), 10, t=1, kf=1.4)					▷ <u>D</u> ry run ▶ <u>R</u> un		· /	· · · · · ·		
ct command: De <u>v</u> ice	Scan Other						Users		xperiment		
ect command: Device	Scan Other								itz <heinz.maier-leibnitz< td=""><td>@frm2.tum.de></td><td></td></heinz.maier-leibnitz<>	@frm2.tum.de>	
							Setups	tas			
							Samples	Gd3CdB7			
							Environments				
qcscan((1, 0, 0, 6	0), (0.002, 0, 0, 0), 10, t=1, kf=1.4)						Detectors	vdet			
							Scans	T, Ts			
							Remar <u>k</u>				
							NICOS devices				
	art :: Waiting :: estimated 1 second left / kf -> 1.400, ana -> 1.400, att -> -83.957						Enter search exp	ression			
							Name		Value	Status	
29:37] (sim) # 29:37] (sim)	h k l E mono ana sth phi T rlu rlu rlu meV A-1 A-1 deg deg K	Ts K	t s	mon cts	ctr cts		∽- 💥 cryo				
29:37] (sim) 29:37] (sim) tas	: powder line from 2ki: Cu 2,0,0 at 76.736 deg						— 🔵 Т		2.001 K		
29:37] (sim) 1/21 29:37] (sim) tas	0.9800 -0.0000 0.0000 0.0000 1.400 1.400 308.926 77.852 2.001 : powder line from 2ki: Cu 2,0,0 at 76.736 deg	2.001	0.000	0	θ		Ts		2.001 K		
29:37] (sim) 2/21	0.9820 -0.0000 0.0000 0.0000 1.400 1.400 309.021 78.041 2.001	2.001	0.000	0	θ		∽- 🐹 source				
:29:37] (sim) tas :29:37] (sim) 3/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9840 -0.0000 0.0000 0.0000 1.400 1.400 309.115 78.231 2.001	2.001	0.000	0	Θ		Reacto	rPower	19.845 MW	idle	
29:37] (sim) tas 29:37] (sim) 4/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9860 -0.0000 0.0000 0.0000 1.400 1.400 309.210 78.420 2.001	2.001	0.000	0	0		∽ 💥 system				
29:37] (sim) tas 29:37] (sim) 5/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9880 -0.0000 0.0000 0.0000 1.400 1.400 309.305 78.610 2.001	2.001	0.000	0	9		o demo				
:29:37] (sim) 6/21	0.9900 -0.0000 0.0000 0.0000 1.400 1.400 309.400 78.800 2.001	2.001	0.000	0	0		V-O Exp	t	0		
29:37] (sim) 7/21 29:37] (sim) 8/21	0.9920 0.0000 0.0000 0.0000 1.400 1.400 309.495 78.990 2.001 0.9940 -0.0000 0.0000 0.0000 1.400 1.400 309.590 79.181 2.001	2.001 2.001	0.000	0	0		lastsca		0		
29:37] (sim) 9/21 29:37] (sim) 10/21	0.9960 0.0000 0.0000 0.0000 1.400 1.400 309.686 79.372 2.001 0.9980 -0.0000 0.0000 0.0000 1.400 1.400 309.781 79.563 2.001	2.001 2.001	0.000	0	0		Sample		Gd3CdB7		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.000, -0.000, 0.000]	1.60.6			-		Space		194.867 GiB	194.87 GiB free	
29:37] (sim) 11/21	: possible type A spurion with scattering vector [1.000, -0.000, 0.000] 1.0000 -0.0000 0.0000 0.0000 1.400 1.400 309.877 79.754 2.001	2.001	0.000	Θ	θ		UBahn		7, 17, 27, 37, 47 min		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.002, 0.000, 0.000] : possible type A spurion with scattering vector [1.002, 0.000, 0.000]						∽- 💥 tas				
29:37] (sim) 12/21 29:37] (sim) tas	1.0020 0.0000 0.0000 0.0000 1.400 1.400 309.973 79.946 2.001 : possible type M spurion with scattering vector [1.004, 0.000, 0.000]	2.001	0.000	Θ	θ		🔵 alpha		0.000 deg	idle	
29:37] (sim) tas	: possible type A spurion with scattering vector [1.004, 0.000, 0.000]	HUP		11111138			- 😑 ana		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) 13/21 29:37] (sim) tas	1.0040 0.0000 0.0000 0.0000 1.400 1.400 310.069 80.137 2.001 : possible type M spurion with scattering vector [1.006, 0.000, 0.000]	2.001	0.000	Θ	0		🔵 ath		-41.978 deg	idle	
29:37] (sim) tas 29:37] (sim) 14/21	: possible type A spurion with scattering vector [1.006, 0.000, 0.000] 1.0060 0.0000 0.0000 0.0000 1.400 1.400 310.165 80.330 2.001	2.001	0.000	0	0		🔵 att		-83.518 deg	virtual moving	
29:37] (sim) tas	: possible type M spurion with scattering vector [1.008, -0.000, 0.000]					·	- 🔵 ec		None	chi=idle, omega=idle	
29:37] (sim) tas 29:37] (sim) 15/21	: possible type A spurion with scattering vector [1.008, -0.000, 0.000] 1.0080 -0.0000 0.0000 0.0000 1.400 1.400 310.261 80.522 2.001	2.001	0.000	0	0		echi 🔵		0.000 deg	idle	
29:37] (sim) 16/21 29:37] (sim) 17/21	1.0100 0.0000 0.0000 0.0000 1.400 1.400 310.357 80.715 2.001 1.0120 -0.0000 0.0000 0.0000 1.400 1.400 310.454 80.908 2.001	2.001 2.001	0.000	0	0		- 😑 Ef		4.116 meV	theta=idle, twotheta=virtual moving	
29:37] (sim) 18/21	1.0140 -0.0000 0.0000 0.0000 1.400 1.400 310.550 81.101 2.001	2.001	0.000	0	0	20	- 🔵 Ei		4.978 meV	theta=idle, twotheta=idle	
29:37] (sim) 19/21 29:37] (sim) 20/21	1.0160 -0.0000 0.0000 0.0000 1.400 1.400 310.647 81.294 2.001 1.0180 -0.0000 0.0000 1.400 1.400 310.744 81.488 2.001	2.001 2.001	0.000	0	0 0		🔵 ephi		0.000 deg	idle	
29:37] (sim) 21/21 29:37] (sim)	1.0200 0.0000 0.0000 0.0000 1.400 1.400 310.841 81.682 2.001	2.001	0.000	0	0		─ ○ kf		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) Finishe	ed at: 2021-07-16 11:29:37			12			— 🔵 ki		1.550 A-1	theta=idle, twotheta=idle	
29:37] (sim) ====== 29:37] (sim) Dry run) finished						-O Lad		400.000 mm		

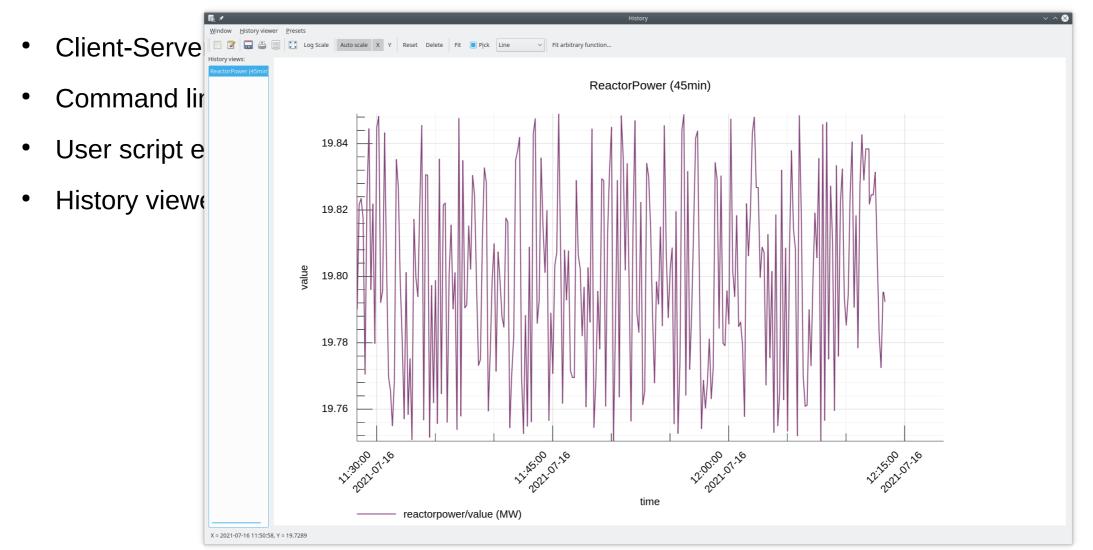
🖡 Connect 🛛 🧊 🖗 Exit 🖉	View 🥥 📝 Editor 🔤 Scans 👩 History 🏙 Live data 📃 Logbook 📃 Log files	Errors	Watch	ndog 🔲 🔳	~ 🔲 ~ 🙆						
mmand line		•	-				Experiment Infor	mation and Set	an		
mmand line								p0			
qcscan((1, 0, 0, 0),	(0.002, 0, 0, 0), 10, t=1, kf=1.4)					▷ <u>D</u> ry run ▶ <u>R</u> un		· /	· · · · · ·		
ct command: De <u>v</u> ice	Scan Other						Users		xperiment		
ect command: Device	Scan Other								itz <heinz.maier-leibnitz< td=""><td>@frm2.tum.de></td><td></td></heinz.maier-leibnitz<>	@frm2.tum.de>	
							Setups	tas			
							Samples	Gd3CdB7			
							Environments				
qcscan((1, 0, 0, 6	0), (0.002, 0, 0, 0), 10, t=1, kf=1.4)						Detectors	vdet			
							Scans	T, Ts			
							Remar <u>k</u>				
							NICOS devices				
	art :: Waiting :: estimated 1 second left / kf -> 1.400, ana -> 1.400, att -> -83.957						Enter search exp	ression			
							Name		Value	Status	
29:37] (sim) # 29:37] (sim)	h k l E mono ana sth phi T rlu rlu rlu meV A-1 A-1 deg deg K	Ts K	t s	mon cts	ctr cts		∽- 💥 cryo				
29:37] (sim) 29:37] (sim) tas	: powder line from 2ki: Cu 2,0,0 at 76.736 deg						— 🔵 Т		2.001 K		
29:37] (sim) 1/21 29:37] (sim) tas	0.9800 -0.0000 0.0000 0.0000 1.400 1.400 308.926 77.852 2.001 : powder line from 2ki: Cu 2,0,0 at 76.736 deg	2.001	0.000	0	θ		Ts		2.001 K		
29:37] (sim) 2/21	0.9820 -0.0000 0.0000 0.0000 1.400 1.400 309.021 78.041 2.001	2.001	0.000	0	θ		∽- 🐹 source				
:29:37] (sim) tas :29:37] (sim) 3/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9840 -0.0000 0.0000 0.0000 1.400 1.400 309.115 78.231 2.001	2.001	0.000	0	Θ		Reacto	rPower	19.845 MW	idle	
29:37] (sim) tas 29:37] (sim) 4/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9860 -0.0000 0.0000 0.0000 1.400 1.400 309.210 78.420 2.001	2.001	0.000	0	0		∽ 💥 system				
29:37] (sim) tas 29:37] (sim) 5/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9880 -0.0000 0.0000 0.0000 1.400 1.400 309.305 78.610 2.001	2.001	0.000	0	9		o demo				
:29:37] (sim) 6/21	0.9900 -0.0000 0.0000 0.0000 1.400 1.400 309.400 78.800 2.001	2.001	0.000	0	0		V-O Exp	t	0		
29:37] (sim) 7/21 29:37] (sim) 8/21	0.9920 0.0000 0.0000 0.0000 1.400 1.400 309.495 78.990 2.001 0.9940 -0.0000 0.0000 0.0000 1.400 1.400 309.590 79.181 2.001	2.001 2.001	0.000	0	0		lastsca		0		
29:37] (sim) 9/21 29:37] (sim) 10/21	0.9960 0.0000 0.0000 0.0000 1.400 1.400 309.686 79.372 2.001 0.9980 -0.0000 0.0000 0.0000 1.400 1.400 309.781 79.563 2.001	2.001 2.001	0.000	0	0		Sample		Gd3CdB7		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.000, -0.000, 0.000]	1.60.6			-		Space		194.867 GiB	194.87 GiB free	
29:37] (sim) 11/21	: possible type A spurion with scattering vector [1.000, -0.000, 0.000] 1.0000 -0.0000 0.0000 0.0000 1.400 1.400 309.877 79.754 2.001	2.001	0.000	Θ	θ		UBahn		7, 17, 27, 37, 47 min		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.002, 0.000, 0.000] : possible type A spurion with scattering vector [1.002, 0.000, 0.000]						∽- 💥 tas				
29:37] (sim) 12/21 29:37] (sim) tas	1.0020 0.0000 0.0000 0.0000 1.400 1.400 309.973 79.946 2.001 : possible type M spurion with scattering vector [1.004, 0.000, 0.000]	2.001	0.000	Θ	θ		🔵 alpha		0.000 deg	idle	
29:37] (sim) tas	: possible type A spurion with scattering vector [1.004, 0.000, 0.000]	HUP		11111138			- 😑 ana		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) 13/21 29:37] (sim) tas	1.0040 0.0000 0.0000 0.0000 1.400 1.400 310.069 80.137 2.001 : possible type M spurion with scattering vector [1.006, 0.000, 0.000]	2.001	0.000	Θ	0		🔵 ath		-41.978 deg	idle	
29:37] (sim) tas 29:37] (sim) 14/21	: possible type A spurion with scattering vector [1.006, 0.000, 0.000] 1.0060 0.0000 0.0000 0.0000 1.400 1.400 310.165 80.330 2.001	2.001	0.000	0	0		🔵 att		-83.518 deg	virtual moving	
29:37] (sim) tas	: possible type M spurion with scattering vector [1.008, -0.000, 0.000]					·	- 🔵 ec		None	chi=idle, omega=idle	
29:37] (sim) tas 29:37] (sim) 15/21	: possible type A spurion with scattering vector [1.008, -0.000, 0.000] 1.0080 -0.0000 0.0000 0.0000 1.400 1.400 310.261 80.522 2.001	2.001	0.000	0	0		echi 🔵		0.000 deg	idle	
29:37] (sim) 16/21 29:37] (sim) 17/21	1.0100 0.0000 0.0000 0.0000 1.400 1.400 310.357 80.715 2.001 1.0120 -0.0000 0.0000 0.0000 1.400 1.400 310.454 80.908 2.001	2.001 2.001	0.000	0	0		- 😑 Ef		4.116 meV	theta=idle, twotheta=virtual moving	
29:37] (sim) 18/21	1.0140 -0.0000 0.0000 0.0000 1.400 1.400 310.550 81.101 2.001	2.001	0.000	0	0	20	- 🔵 Ei		4.978 meV	theta=idle, twotheta=idle	
29:37] (sim) 19/21 29:37] (sim) 20/21	1.0160 -0.0000 0.0000 0.0000 1.400 1.400 310.647 81.294 2.001 1.0180 -0.0000 0.0000 1.400 1.400 310.744 81.488 2.001	2.001 2.001	0.000	0	0 0		🔵 ephi		0.000 deg	idle	
29:37] (sim) 21/21 29:37] (sim)	1.0200 0.0000 0.0000 0.0000 1.400 1.400 310.841 81.682 2.001	2.001	0.000	0	0		─ ○ kf		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) Finishe	ed at: 2021-07-16 11:29:37			12			— 🔵 ki		1.550 A-1	theta=idle, twotheta=idle	
29:37] (sim) ====== 29:37] (sim) Dry run) finished						-O Lad		400.000 mm		

🖡 Connect 🛛 🧊 🖗 Exit 🖉	View 🥥 📝 Editor 🔤 Scans 👩 History 🏙 Live data 📃 Logbook 📃 Log files	Errors	Watch	ndog 🔲 🔳	~ 🔲 ~ 🙆						
mmand line		•	-				Experiment Infor	mation and Set	an		
mmand line								p0			
qcscan((1, 0, 0, 0),	(0.002, 0, 0, 0), 10, t=1, kf=1.4)					▷ <u>D</u> ry run ▶ <u>R</u> un		· /			
ct command: De <u>v</u> ice	Scan Other						Users		xperiment		
ect command: Device	Scan Other								itz <heinz.maier-leibnitz< td=""><td>@frm2.tum.de></td><td></td></heinz.maier-leibnitz<>	@frm2.tum.de>	
							Setups	tas			
							Samples	Gd3CdB7			
							Environments				
qcscan((1, 0, 0, 6	0), (0.002, 0, 0, 0), 10, t=1, kf=1.4)						Detectors	vdet			
							Scans	T, Ts			
							Remar <u>k</u>				
							NICOS devices				
	art :: Waiting :: estimated 1 second left / kf -> 1.400, ana -> 1.400, att -> -83.957						Enter search exp	ression			
							Name		Value	Status	
29:37] (sim) # 29:37] (sim)	h k l E mono ana sth phi T rlu rlu rlu meV A-1 A-1 deg deg K	Ts K	t s	mon cts	ctr cts		∽- 💥 cryo				
29:37] (sim) 29:37] (sim) tas	: powder line from 2ki: Cu 2,0,0 at 76.736 deg						— 🔵 Т		2.001 K		
29:37] (sim) 1/21 29:37] (sim) tas	0.9800 -0.0000 0.0000 0.0000 1.400 1.400 308.926 77.852 2.001 : powder line from 2ki: Cu 2,0,0 at 76.736 deg	2.001	0.000	0	θ		Ts		2.001 K		
29:37] (sim) 2/21	0.9820 -0.0000 0.0000 0.0000 1.400 1.400 309.021 78.041 2.001	2.001	0.000	0	θ		∽- 🐹 source				
:29:37] (sim) tas :29:37] (sim) 3/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9840 -0.0000 0.0000 0.0000 1.400 1.400 309.115 78.231 2.001	2.001	0.000	0	Θ		Reacto	rPower	19.845 MW	idle	
29:37] (sim) tas 29:37] (sim) 4/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9860 -0.0000 0.0000 0.0000 1.400 1.400 309.210 78.420 2.001	2.001	0.000	0	0		∽ 💥 system				
29:37] (sim) tas 29:37] (sim) 5/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9880 -0.0000 0.0000 0.0000 1.400 1.400 309.305 78.610 2.001	2.001	0.000	0	9		o demo				
:29:37] (sim) 6/21	0.9900 -0.0000 0.0000 0.0000 1.400 1.400 309.400 78.800 2.001	2.001	0.000	0	0		V-O Exp	t	0		
29:37] (sim) 7/21 29:37] (sim) 8/21	0.9920 0.0000 0.0000 0.0000 1.400 1.400 309.495 78.990 2.001 0.9940 -0.0000 0.0000 0.0000 1.400 1.400 309.590 79.181 2.001	2.001 2.001	0.000	0	0		lastsca		0		
29:37] (sim) 9/21 29:37] (sim) 10/21	0.9960 0.0000 0.0000 0.0000 1.400 1.400 309.686 79.372 2.001 0.9980 -0.0000 0.0000 0.0000 1.400 1.400 309.781 79.563 2.001	2.001 2.001	0.000	0	0		Sample		Gd3CdB7		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.000, -0.000, 0.000]	1.60.6			-		Space		194.867 GiB	194.87 GiB free	
29:37] (sim) 11/21	: possible type A spurion with scattering vector [1.000, -0.000, 0.000] 1.0000 -0.0000 0.0000 0.0000 1.400 1.400 309.877 79.754 2.001	2.001	0.000	Θ	θ		UBahn		7, 17, 27, 37, 47 min		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.002, 0.000, 0.000] : possible type A spurion with scattering vector [1.002, 0.000, 0.000]						∽- 💥 tas				
29:37] (sim) 12/21 29:37] (sim) tas	1.0020 0.0000 0.0000 0.0000 1.400 1.400 309.973 79.946 2.001 : possible type M spurion with scattering vector [1.004, 0.000, 0.000]	2.001	0.000	Θ	θ		🔵 alpha		0.000 deg	idle	
29:37] (sim) tas	: possible type A spurion with scattering vector [1.004, 0.000, 0.000]	HUP		11111138			- 😑 ana		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) 13/21 29:37] (sim) tas	1.0040 0.0000 0.0000 0.0000 1.400 1.400 310.069 80.137 2.001 : possible type M spurion with scattering vector [1.006, 0.000, 0.000]	2.001	0.000	Θ	0		🔵 ath		-41.978 deg	idle	
29:37] (sim) tas 29:37] (sim) 14/21	: possible type A spurion with scattering vector [1.006, 0.000, 0.000] 1.0060 0.0000 0.0000 0.0000 1.400 1.400 310.165 80.330 2.001	2.001	0.000	0	0		🔵 att		-83.518 deg	virtual moving	
29:37] (sim) tas	: possible type M spurion with scattering vector [1.008, -0.000, 0.000]					·	- 🔵 ec		None	chi=idle, omega=idle	
29:37] (sim) tas 29:37] (sim) 15/21	: possible type A spurion with scattering vector [1.008, -0.000, 0.000] 1.0080 -0.0000 0.0000 0.0000 1.400 1.400 310.261 80.522 2.001	2.001	0.000	0	0		echi 🔵		0.000 deg	idle	
29:37] (sim) 16/21 29:37] (sim) 17/21	1.0100 0.0000 0.0000 0.0000 1.400 1.400 310.357 80.715 2.001 1.0120 -0.0000 0.0000 0.0000 1.400 1.400 310.454 80.908 2.001	2.001 2.001	0.000	0	0		- 😑 Ef		4.116 meV	theta=idle, twotheta=virtual moving	
29:37] (sim) 18/21	1.0140 -0.0000 0.0000 0.0000 1.400 1.400 310.550 81.101 2.001	2.001	0.000	0	0	20	- 🔵 Ei		4.978 meV	theta=idle, twotheta=idle	
29:37] (sim) 19/21 29:37] (sim) 20/21	1.0160 -0.0000 0.0000 0.0000 1.400 1.400 310.647 81.294 2.001 1.0180 -0.0000 0.0000 1.400 1.400 310.744 81.488 2.001	2.001 2.001	0.000	0	0 0		🔵 ephi		0.000 deg	idle	
29:37] (sim) 21/21 29:37] (sim)	1.0200 0.0000 0.0000 0.0000 1.400 1.400 310.841 81.682 2.001	2.001	0.000	0	0		─ ○ kf		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) Finishe	ed at: 2021-07-16 11:29:37			12			— 🔵 ki		1.550 A-1	theta=idle, twotheta=idle	
29:37] (sim) ====== 29:37] (sim) Dry run) finished						-O Lad		400.000 mm		

🖡 Connect 🛛 🧊 🖗 Exit 🖉	View 🥥 📝 Editor 🔤 Scans 👩 History 🏙 Live data 📃 Logbook 📃 Log files	Errors	Watch	ndog 🔲 🔳	~ 🔲 ~ 🙆						
mmand line		•	-				Experiment Infor	mation and Set	an		
mmand line								p0			
qcscan((1, 0, 0, 0),	(0.002, 0, 0, 0), 10, t=1, kf=1.4)					▷ <u>D</u> ry run ▶ <u>R</u> un		· /	· · · · · ·		
ct command: De <u>v</u> ice	Scan Other						Users		xperiment		
ect command: Device	Scan Other								itz <heinz.maier-leibnitz< td=""><td>@frm2.tum.de></td><td></td></heinz.maier-leibnitz<>	@frm2.tum.de>	
							Setups	tas			
							Samples	Gd3CdB7			
							Environments				
qcscan((1, 0, 0, 6	0), (0.002, 0, 0, 0), 10, t=1, kf=1.4)						Detectors	vdet			
							Scans	T, Ts			
							Remar <u>k</u>				
							NICOS devices				
	art :: Waiting :: estimated 1 second left / kf -> 1.400, ana -> 1.400, att -> -83.957						Enter search exp	ression			
							Name		Value	Status	
29:37] (sim) # 29:37] (sim)	h k l E mono ana sth phi T rlu rlu rlu meV A-1 A-1 deg deg K	Ts K	t s	mon cts	ctr cts		∽- 💥 cryo				
29:37] (sim) 29:37] (sim) tas	: powder line from 2ki: Cu 2,0,0 at 76.736 deg						— 🔵 Т		2.001 K		
29:37] (sim) 1/21 29:37] (sim) tas	0.9800 -0.0000 0.0000 0.0000 1.400 1.400 308.926 77.852 2.001 : powder line from 2ki: Cu 2,0,0 at 76.736 deg	2.001	0.000	0	θ		Ts		2.001 K		
29:37] (sim) 2/21	0.9820 -0.0000 0.0000 0.0000 1.400 1.400 309.021 78.041 2.001	2.001	0.000	0	θ		∽- 🐹 source				
:29:37] (sim) tas :29:37] (sim) 3/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9840 -0.0000 0.0000 0.0000 1.400 1.400 309.115 78.231 2.001	2.001	0.000	0	Θ		Reacto	rPower	19.845 MW	idle	
29:37] (sim) tas 29:37] (sim) 4/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9860 -0.0000 0.0000 0.0000 1.400 1.400 309.210 78.420 2.001	2.001	0.000	0	0		∽ 💥 system				
29:37] (sim) tas 29:37] (sim) 5/21	: powder line from 2ki: Cu 2,0,0 at 76.736 deg 0.9880 -0.0000 0.0000 0.0000 1.400 1.400 309.305 78.610 2.001	2.001	0.000	0	9		o demo				
:29:37] (sim) 6/21	0.9900 -0.0000 0.0000 0.0000 1.400 1.400 309.400 78.800 2.001	2.001	0.000	0	0		V-O Exp		0		
29:37] (sim) 7/21 29:37] (sim) 8/21	0.9920 0.0000 0.0000 0.0000 1.400 1.400 309.495 78.990 2.001 0.9940 -0.0000 0.0000 0.0000 1.400 1.400 309.590 79.181 2.001	2.001 2.001	0.000	0	0		lastsca		0		
29:37] (sim) 9/21 29:37] (sim) 10/21	0.9960 0.0000 0.0000 0.0000 1.400 1.400 309.686 79.372 2.001 0.9980 -0.0000 0.0000 0.0000 1.400 1.400 309.781 79.563 2.001	2.001 2.001	0.000	0	0		Sample		Gd3CdB7		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.000, -0.000, 0.000]	1.60.6			-		Space		194.867 GiB	194.87 GiB free	
29:37] (sim) 11/21	: possible type A spurion with scattering vector [1.000, -0.000, 0.000] 1.0000 -0.0000 0.0000 0.0000 1.400 1.400 309.877 79.754 2.001	2.001	0.000	Θ	θ		UBahn		7, 17, 27, 37, 47 min		
29:37] (sim) tas 29:37] (sim) tas	: possible type M spurion with scattering vector [1.002, 0.000, 0.000] : possible type A spurion with scattering vector [1.002, 0.000, 0.000]						∽- 💥 tas				
29:37] (sim) 12/21 29:37] (sim) tas	1.0020 0.0000 0.0000 0.0000 1.400 1.400 309.973 79.946 2.001 : possible type M spurion with scattering vector [1.004, 0.000, 0.000]	2.001	0.000	Θ	θ		🔵 alpha		0.000 deg	idle	
29:37] (sim) tas	: possible type A spurion with scattering vector [1.004, 0.000, 0.000]	HUP		11111138			- 😑 ana		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) 13/21 29:37] (sim) tas	1.0040 0.0000 0.0000 0.0000 1.400 1.400 310.069 80.137 2.001 : possible type M spurion with scattering vector [1.006, 0.000, 0.000]	2.001	0.000	Θ	0		🔵 ath		-41.978 deg	idle	
29:37] (sim) tas 29:37] (sim) 14/21	: possible type A spurion with scattering vector [1.006, 0.000, 0.000] 1.0060 0.0000 0.0000 0.0000 1.400 1.400 310.165 80.330 2.001	2.001	0.000	0	0		🔵 att		-83.518 deg	virtual moving	
29:37] (sim) tas	: possible type M spurion with scattering vector [1.008, -0.000, 0.000]					·	ec		None	chi=idle, omega=idle	
29:37] (sim) tas 29:37] (sim) 15/21	: possible type A spurion with scattering vector [1.008, -0.000, 0.000] 1.0080 -0.0000 0.0000 0.0000 1.400 1.400 310.261 80.522 2.001	2.001	0.000	0	0		echi 🔵		0.000 deg	idle	
29:37] (sim) 16/21 29:37] (sim) 17/21	1.0100 0.0000 0.0000 0.0000 1.400 1.400 310.357 80.715 2.001 1.0120 -0.0000 0.0000 0.0000 1.400 1.400 310.454 80.908 2.001	2.001 2.001	0.000	0	0		- 😑 Ef		4.116 meV	theta=idle, twotheta=virtual moving	
29:37] (sim) 18/21	1.0140 -0.0000 0.0000 0.0000 1.400 1.400 310.550 81.101 2.001	2.001	0.000	0	0	20	- 🔵 Ei		4.978 meV	theta=idle, twotheta=idle	
29:37] (sim) 19/21 29:37] (sim) 20/21	1.0160 -0.0000 0.0000 0.0000 1.400 1.400 310.647 81.294 2.001 1.0180 -0.0000 0.0000 1.400 1.400 310.744 81.488 2.001	2.001 2.001	0.000	0	0 0		🔵 ephi		0.000 deg	idle	
29:37] (sim) 21/21 29:37] (sim)	1.0200 0.0000 0.0000 0.0000 1.400 1.400 310.841 81.682 2.001	2.001	0.000	0	0		─ ○ kf		1.409 A-1	theta=idle, twotheta=virtual moving	
29:37] (sim) Finishe	ed at: 2021-07-16 11:29:37			12			— 🔵 ki		1.550 A-1	theta=idle, twotheta=idle	
29:37] (sim) ====== 29:37] (sim) Dry run) finished						-O Lad		400.000 mm		

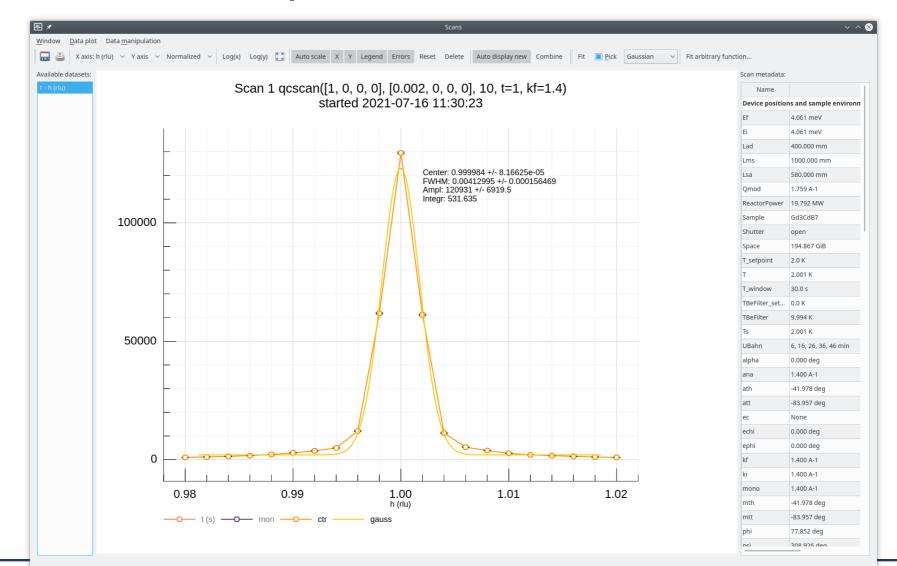
- Client-Server architecture: more than one connection possible
- Command line window
- User script editor

2 🗶	/home/jkrueger/build/nicos/sans1/script1.py - NICOS editor 🗸 🔨
<u>W</u> indow <u>F</u> ile <u>V</u> iev	v <u>E</u> dit <u>S</u> cript Editor t <u>o</u> ols
	in the second se
New command: De	vice Sc <u>a</u> n Ot <u>h</u> er
Scripts	😵 test_manualscan.py 🗞 testscript.py 🗞 nestedscan.py 🗞 script1.py 🗞 script2.py 🗞 script3.py 🗞 script4.py ⊗ testscript4.py 🗞 testscript3.py 🗞 script4.py 🗞 script4.py 🗞 script4.py 🗞 script4.py 🔊
	<pre>1 maw(instrument_shutter, 'open')</pre>
	2 move(col, 4) 3 move(det1 z, 2000)
	4 # wait(col, det1 z)
	5 wait(det1 z)
	6 move(selector_lambda, 6)
	7 move(bs1, (500.0, 505.0))
	8 wait(selector_lambda, bs1)
	9 maw(att, 'x100') 10 count(60)
	11 maw(instrument shutter, 'close')
	12
	13 move(col, 8)
	14 move(det1_z, 8000)
	15 wait (col, detl_z)
	<pre>16 move(selector_lambda, 8) 17 move(bs1, (502.0, 501.0))</pre>
	17 move(bs1, (302.0, 301.0)) 18 wait(selector lambda, bs1)
	19 may(att, 'x1000')
	20 maw(instrument_shutter, 'open')
	21 count(120)
	<pre>22 maw(instrument_shutter, 'close')</pre>
	23
	24 move(col, 20) 25 move(det1 z, 20000)
	26 wait (col, detl z)
	<pre>27 move(selector_lambda, 12)</pre>
	28 move(bs1, (498.0, 495.0))
	29 wait(selector_lambda, bs1)
	<pre>30 maw(att, 'open') 31 maw(instrument shutter, 'open')</pre>
	32 count(300)
	33 maw(instrument shutter, 'close')
	34
	35 -move(selector_rpm, 3100)
	36



ew command:	
The communition of the community of the	Device Scan Other
ipts	😵 test_manualscan.py 🛞 testscript.py 🛞 nestedscan.py 🛞 script1.py 🛞 script2.py 🛞 script3.py 🛞 script4.py 🛞 charm.py 🛞
ipt5	1 max(instrument shutter, 'open')
	2 move(col, 4)
	3 move(det1 z, 2000)
	4 # wait(col, detl z)
	5 wait(det1_z)
	6 move(selector_lambda, 6)
	7 move(bs1, (500.0, 505.0))
	8 wait(selector_lambda, bs1)
	9 maw(att, 'x100') 10 count(60)
	11 maw(instrument shutter, 'close')
	12
	13 move(col, 8)
	14 move(det1 z, 8000)
	15 wait (col, det1_z)
	16 move(selector_lambda, 8)
	17 move(bs1, (502.0, 501.0))
	18 wait(selector_lambda, bs1)
	<pre>19 maw(att, 'x1000') 20 maw(instrument shutter, 'open')</pre>
	20 maw(instrument_snutter, open) 21 count(120)
	<pre>22 maw(instrument shutter, 'close')</pre>
	23
	24 move(col, 20)
	<pre>25 move(det1_z, 20000)</pre>
	26 wait (col, det1_z)
	27 move(selector_lambda, 12)
	28 move(bs1, (498.0, 495.0))
	<pre>29 wait(selector_lambda, bs1) 30 maw(att, 'open')</pre>
	30 maw(att, open') 31 maw(instrument shutter, 'open')
	32 count(300)
	<pre>33 maw(instrument shutter, 'close')</pre>
	34
	35 - move(selector rpm, 3100)
	36

- Client-Server architecture: more than one connection possible
- Command line window
- User script editor
- History viewer: Display of archived data





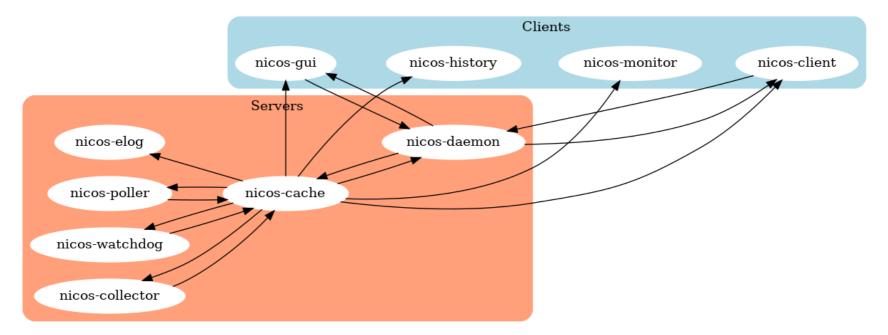
- Client-Server architecture: more than one connection possible
- Command line window
- User script editor
- History viewer: Display of archived data
- On-line data display with preliminary fitting

- Client-Server architecture: more than one connection possible
- Command line window
- User script editor
- History viewer: Display of archived data
- On-line data display with preliminary fitting
- Electronic logbook to show the experiment history

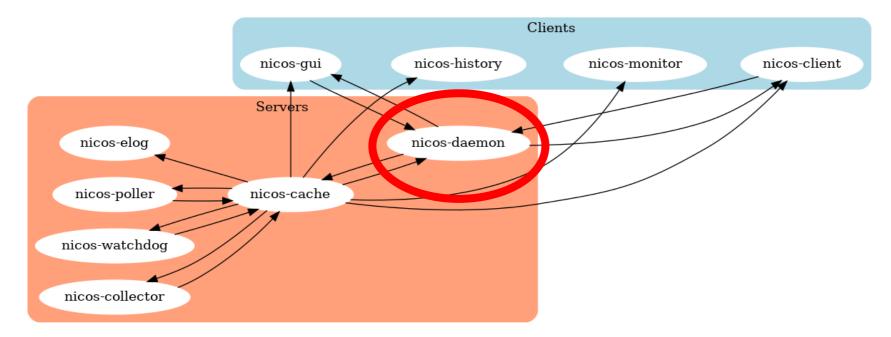
v Browser Logbo	ok											Logboo	ok -							~
	comment Set	Remark	New Samp	ple Atta	ch file															Se
all messages	Messages																			2021-07-16 11:10
<u>all messages</u> ents	New setu	p: tas																		
xperiment p0:	Messages Messages Messages																			
IICOS demo xperiment	Messages	da ad a subject		- - -																2021-07-16 11:13
• <u>New</u> sample:	New stan Messages	dard enviro	onment: 1,	, IS																
Gd3CdB7	New sta	ndard dete	ectors: vde	et																2021-07-16 11:1
 <u>New</u> standard 	Messages																			2021-07-16 11:1
<u>environment:</u> <u>T, Ts</u>	New stan	dard enviro	onment: T,	, Ts																2021-07-10 11.1
 <u>New</u> standard 																				
<u>detectors:</u> <u>vdet</u>		is confi	OS triple gured as ic scan o	a virtua	al triple-	-axis ins	trument.													
 <u>New</u> standard 	> qcsca or an ene	n((1, 0, rgv scan.	0, 0), (0 e.g.	0.002, 0,	, 0, 0), 1	10, t=1,														
<u>environment:</u> <u>T, Ts</u>	> qscar ========	((1, 0.2,	0, 4), (.0, 0, 0,	0.2), 21	1, T=1,) =====	(T=1.55)													2021-07-16 11:
New atomdored	New setu	p: tas																		
standard environment:																				2021-07-16 11:
• <u>New</u>	Script finishe	5	•			0 0 0	, (0.002,	0 0 0)	10 +-1	kf-1 4										
<u>standard</u> <u>detectors:</u>	tas WARNING:	: scan m	node is nor new empty	ow CKF at y file co	t 1.400 A- bunter fil	-1 le at dai	a/counters													
• <u>vdet</u> • <u>New</u>	Starting Started a	scan:	qcscan(9, 0], [0.		0, 0], 10,													
standard environment:	Scan numb Filename:	er:	1 p0 0000	00001.dat	t															
<u>T, Ts</u>	#	h rlu	k rlu	l rlu	E meV	mono A-1	ana A-1	sth deg	phi deg	т К	Ts K	t s	mon cts	ctr cts						
	1/21	0.9800	-0.0000	0.0000	0.0000	1.400	1.400 1.400		77.852	2.001 2.001	2.001 2.001	1.000	35715 35732	994 1177						
	3/21 4/21	0.9840 0.9860	-0.0000	0.0000	0.0000	1.400 1.400	1.400	309.115 309.210	78.231 78.420	2.001 2.001	2.001 2.001	1.000	35635 35414	1424 1729						
	6/21	0.9900	-0.0000	0.0000	0.0000	1.400 1.400 1.400	1.400 1.400 1.400	309.400	78.610 78.800 78.990	2.001 2.001 2.001	2.001 2.001 2.001	1.000 1.000 1.000	35917 35488 35924	2195 2884 3749						
	8/21 9/21	0.9940 0.9960	-0.0000 0.0000	0.0000	0.0000	1.400	1.400	309.590 309.686	79.181 79.372	2.001 2.001	2.001 2.001	1.000	35782 35777	4962 12121						
	11/21	1.0000	-0.0000	0.0000	0.0000	1.400 1.400 1.400	1.400 1.400 1.400	309.781 309.877 309.973	79.563 79.754 79.946	2.001 2.001 2.001	2.001	1.000 1.000 1.000	35600 35984 35820	61765 129515 61190						
	13/21	1.0040	0.0000	0.0000	0.0000	1.400	1.400	310.069 310.165	80.137	2.001 2.001 2.001	2.001 2.001 2.001	1.000	35820 35924 35579	11232 5310						
	15/21 16/21	1.0080 1.0100	-0.0000 0.0000	0.0000	0.0000	1.400 1.400	1.400	310.261 310.357	80.522 80.715	2.001 2.001	2.001 2.001	1.000	35344 35843	3861 2711						
	18/21	1.0140	-0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	1.400 1.400 1.400	1.400 1.400 1.400	310.454 310.550 310.647	80.908 81.101	2.001 2.001 2.001	2.001 2.001 2.001	1.000 1.000 1.000	35604 35404 35588	2041 1716 1417						
	20/21	1.0180		0.0000	0.0000	1.400 1.400 1.400	1.400	310.744	81.488 81.682	2.001	2.001 2.001 2.001	1.000	35721 36142	1152 986						
	Finished	at:		7-16 11:3	30:53															
	Scan#	Poir	nts	h (r	·lu)	k (r	lu)	l (rlu)		E (me	V)	mono (A-1)	ana (A-1)	sth (deg) 308.926 -	phi (deg)	т (К)	Ts (K)	Plot	Data

- Client-Server architecture: more than one connection possible
- Command line window
- User script editor
- History viewer: Display of archived data
- On-line data display with preliminary fitting
- Electronic logbook to show the experiment history
- Configurable and dynamic status monitor

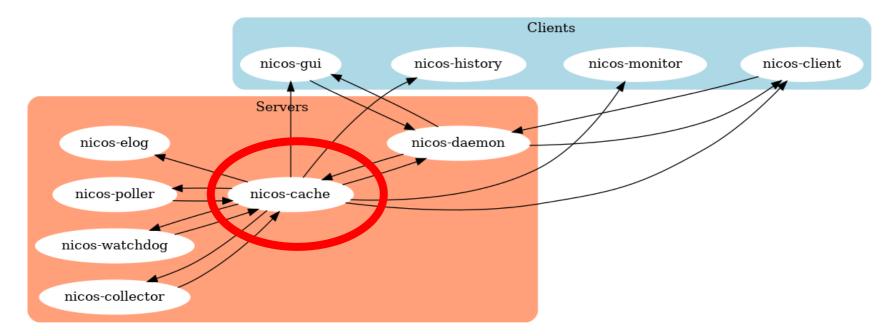
- Client-Server architecture: more than one connection possible
- Command line window
- User script editor
- History viewer: Display of archived data
- On-line data display with preliminary fitting
- Electronic logbook to show the experiment history
- Configurable and dynamic status monitor
- Configurable and dynamic


Experiment Information and Setup	♦ Command line	NICOS devices		\$
Proposal p0		Enter search expression		~
Title NICOS demo experiment	>> Dry run Run	Name	Value	Status
Users	Select command: Device v Scan v Other v	∽- 💥 system	Value	Status
Local Contact H. Maier-Leibnitz <heinz.maier-leibnitz@frm2.tum.< td=""><td></td><td>↓ • Exp</td><td></td><td></td></heinz.maier-leibnitz@frm2.tum.<>		↓ • Exp		
Setups startup		- lastpoint	0	
		lastscan	0	
Samples Gd3CdB7		Sample	Gd3CdB7	
Environments Detectors Scans Remark	<pre>[16:46:22] >>> [system 2025-01-27 16:46:22] setting up NICOS [16:46:22] loading setup 'system' (system setup) [16:46:22] importing module 'nicos.commands.standard' [16:46:22] doading setup 'startup' (NICOS demo startup setup) [16:46:22] creating device 'Exp' (experiment object) [16:46:22] creating device 'Exp' (experiment object) [16:46:22] creating device 'Sample' (sample object) [16:46:22] creating device 'Sample' (sample object) [16:46:22] creating device 'Sample' (Space on log drive) [16:46:23] creating device 'Space' (The amount of free space for storing data) [16:46:23] creating device 'conssink' [16:46:23] creating device 'demo' (demo instrument) [16:46:23] creating device 'dilesink' [16:46:23] creating device 'filesink' [16:46:23] creating device 'filesink' [16:46:23] welcome to the NICOS demo. [16:46:23] Aun one of the following commands to set up either a triple-axis [16:46:23] or a SANS demo setup: [16:46:23] or a SANS demo setup: [16:46:23] > NewSetup('tas') [16:46:23] setups loaded: startup [16:46:23] setups loaded: startup [16:46:23] switched to master mode</pre>			

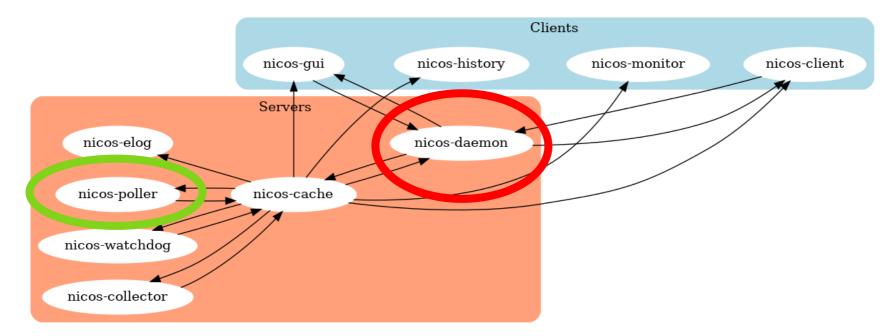
		🚳 🖈	Carint control File	NICOS - guest at localhost:1301	~ ^ 🗞	NLZ
				View Edit Script Tools Help Experiment:NICOS demo experiment II	nected 🔀 🖸	z Maier-Leibnitz Zentrum
		Setup	Experiment Inst			
		Instrument interaction	New expe	eriment		
		Batch file generation Detector Image	Enter a proposal nu			
٠	С	History	Current e	experiment		
		Logs		NICOS demo experiment		
•	C	Elog	Users:	Nico Suser <nico.suser@frm2.tum.de> (Institute for Science)</nico.suser@frm2.tum.de>		
	•	Finish Experiment	Local contact:	H. Maier-Leibnitz <heinz.maier-leibnitz@frm2.tum.de></heinz.maier-leibnitz@frm2.tum.de>		
•			Sample name:	Gd3CdB7		
•	U		Script path:	Open data/2025/p0/scripts		
•		:	Notifications			
•	н	I	(one email address per line):			
-	~					
•	Ο		Send data (one email address			
			per line):			
•	E			Do not continue scripts after fatal errors		
•	C	(
	-					
•	C	(
00/40	10005				∽ An <u>w</u> enden	
02/10/	2025					114

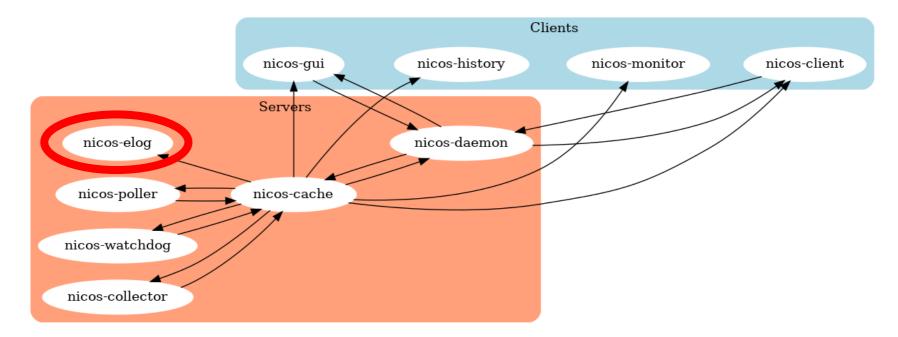


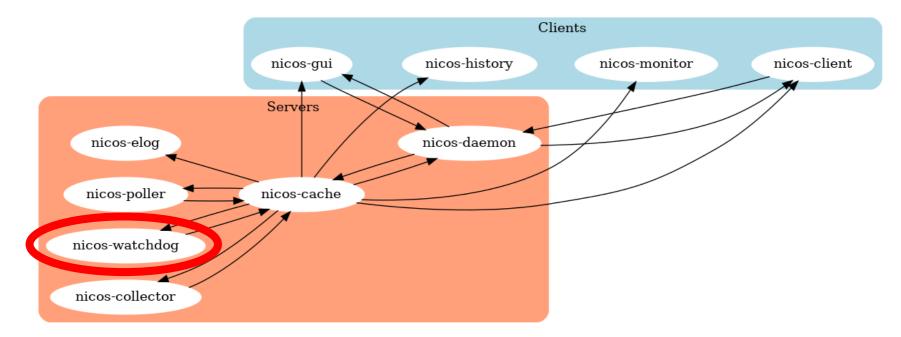
- Client-Server architecture: more than one connection possible
- Command line window
- User script editor
- History viewer: Display of archived data
- On-line data display with preliminary fitting
- Electronic logbook to show the experiment history
- Configurable and dynamic status monitor
- Configurable and dynamic
- Extendable by custom panels

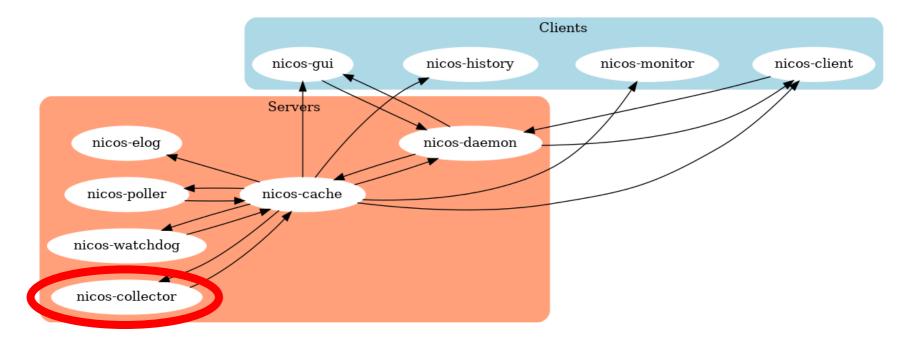


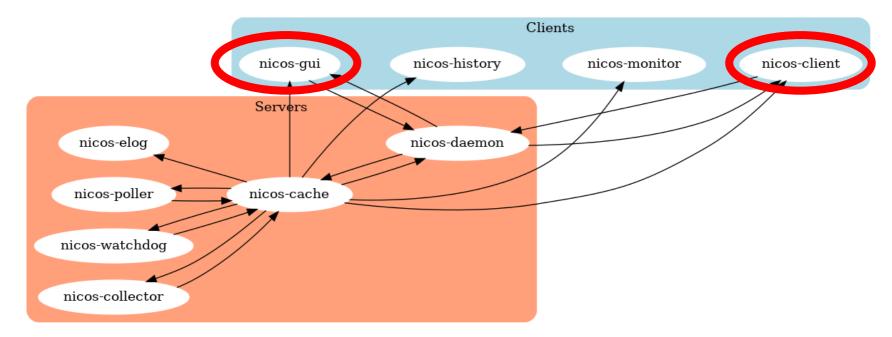

• Execution daemon: executes user input

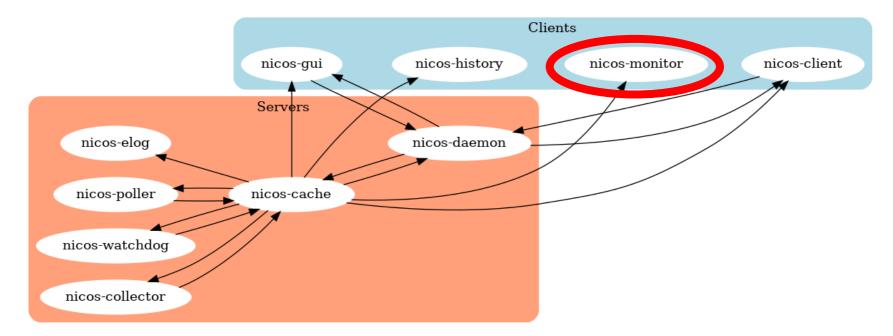

• Cache: save states/values/parameters, pushes value/state changes

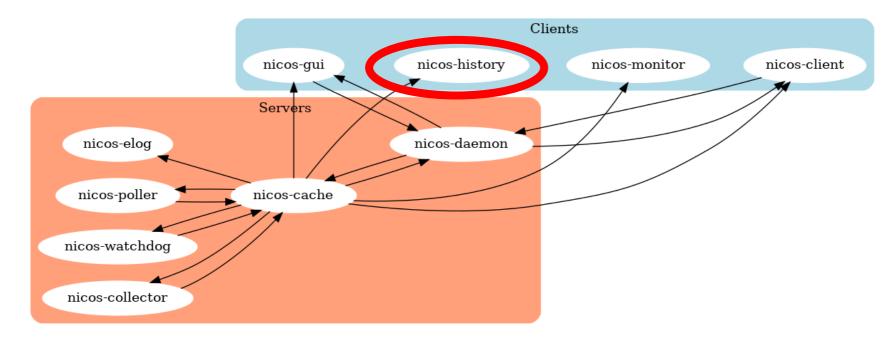

• Poller: fetches periodically values/parameter/states from devices


• Daemon and poller (read-only) interact with hardware


• Electronic logbook: experiment history in user friendly form (ASCII, HTML, external "ELN", ...)


- Watchdog
 - Check for events and send out alerts (Email, SMS, Slack, ...)
 - Configurable conditions


• Collector: transfer data to/from other cache(s)


• GUI/client: user interaction

- Monitor: Display status/value/parameter of devices
- Qt and HTML version

• History: Display archived date depending on time

• Git as version control system

- Git as version control system
- Test suite to catch regressions before integrate changes into source

- Git as version control system
- Test suite to catch regressions before integrate changes into source
- CI with checking against test suite, static code checker, and setup check

- Git as version control system
- Test suite to catch regressions before integrate changes into source
- CI with checking against test suite, static code checker, and setup check
- Code review system (Gerrit) to review, discuss, and improve changes

- Git as version control system
- Test suite to catch regressions before integrate changes into source
- CI with checking against test suite, static code checker, and setup check
- Code review system (Gerrit) to review, discuss, and improve changes
- Code is freely available (GNU public license)

- Git as version control system
- Test suite to catch regressions before integrate changes into source
- CI with checking against test suite, static code checker, and setup check
- Code review system (Gerrit) to review, discuss, and improve changes
- Code is freely available (GNU public license)
- Project page: https://www.nicos-controls.org with links to
 - Source repository
 - Issue tracker
 - Code review

- Git as version control system
- Test suite to catch regressions before integrate changes into source
- CI with checking against test suite, static code checker, and setup check
- Code review system (Gerrit) to review, discuss, and improve changes
- Code is freely available (GNU public license)
- Project page: https://www.nicos-controls.org with links to
 - Source repository
 - Issue tracker
 - Code review
- Readonly copy on GitHub: https://github.com/mlz-ictrl/nicos

- NICOS is widely distributed and used at European Neutron Facilities
 - MLZ 25 instruments + 5 in preparation + several lab installations
 - **PSI** 16 running instruments
 - ESS ~10 ready to run installations (waiting for hardware and neutrons)

- NICOS is widely distributed and used at European Neutron Facilities
 - MLZ 25 instruments + 5 in preparation + several lab installations
 - **PSI** 16 running instruments
 - ESS ~10 ready to run installations (waiting for hardware and neutrons)
- NICOS is mature (more the 15 years in operation)

- NICOS is widely distributed and used at European Neutron Facilities
 - MLZ 25 instruments + 5 in preparation + several lab installations
 - **PSI** 16 running instruments
 - ESS ~10 ready to run installations (waiting for hardware and neutrons)
- NICOS is mature (more the 15 years in operation)
- User friendly
 - Science driven development
 - Developed from scientists for scientist
 - High user acceptance and satisfaction

- NICOS is widely distributed and used at European Neutron Facilities
 - MLZ 25 instruments + 5 in preparation + several lab installations
 - **PSI** 16 running instruments
 - ESS ~10 ready to run installations (waiting for hardware and neutrons)
- NICOS is mature (more the 15 years in operation)
- User friendly
 - Science driven development
 - Developed from scientists for scientist
 - High user acceptance and satisfaction
- Wide range of supported HW access layers
 - Tango, EPICS, SECoP, CARESS, ...

- NICOS is widely distributed and used at European Neutron Facilities
 - MLZ 25 instruments + 5 in preparation + several lab installations
 - **PSI** 16 running instruments
 - ESS ~10 ready to run installations (waiting for hardware and neutrons)
- NICOS is mature (more the 15 years in operation)
- User friendly
 - Science driven development
 - Developed from scientists for scientist
 - High user acceptance and satisfaction
- Wide range of supported HW access layers
 - Tango, EPICS, SECoP, CARESS, ...
- Open Source

NICOS in action